mirror of
				https://github.com/furyfire/trueskill.git
				synced 2025-11-04 10:12:28 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			257 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			257 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
<?php
 | 
						|
 | 
						|
declare(strict_types=1);
 | 
						|
 | 
						|
namespace DNW\Skills\Numerics;
 | 
						|
 | 
						|
/**
 | 
						|
 * Computes Gaussian (bell curve) values.
 | 
						|
 *
 | 
						|
 * @author    Jeff Moser <jeff@moserware.com>
 | 
						|
 * @copyright 2010 Jeff Moser
 | 
						|
 */
 | 
						|
class GaussianDistribution implements \Stringable
 | 
						|
{
 | 
						|
    //sqrt(2*pi)
 | 
						|
    //from https://www.wolframalpha.com/input?i=sqrt%282*pi%29
 | 
						|
    private const M_SQRT_2_PI = 2.5066282746310005024157652848110452530069867406099383166299235763;
 | 
						|
    
 | 
						|
    //log(sqrt(2*pi))
 | 
						|
    //From https://www.wolframalpha.com/input?i=log%28sqrt%282*pi%29%29
 | 
						|
    private const M_LOG_SQRT_2_PI = 0.9189385332046727417803297364056176398613974736377834128171515404;
 | 
						|
    // precision and precisionMean are used because they make multiplying and dividing simpler
 | 
						|
    // (the the accompanying math paper for more details)
 | 
						|
    private float $precision;
 | 
						|
 | 
						|
    private float $precisionMean;
 | 
						|
 | 
						|
    private float $variance;
 | 
						|
 | 
						|
    public function __construct(private float $mean = 0.0, private float $standardDeviation = 1.0)
 | 
						|
    {
 | 
						|
        $this->variance = BasicMath::square($standardDeviation);
 | 
						|
 | 
						|
        if ($this->variance != 0) {
 | 
						|
            $this->precision = 1.0 / $this->variance;
 | 
						|
            $this->precisionMean = $this->precision * $this->mean;
 | 
						|
        } else {
 | 
						|
            $this->precision = \INF;
 | 
						|
 | 
						|
            $this->precisionMean = $this->mean == 0 ? 0 : \INF;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    public function getMean(): float
 | 
						|
    {
 | 
						|
        return $this->mean;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getVariance(): float
 | 
						|
    {
 | 
						|
        return $this->variance;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getStandardDeviation(): float
 | 
						|
    {
 | 
						|
        return $this->standardDeviation;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getPrecision(): float
 | 
						|
    {
 | 
						|
        return $this->precision;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getPrecisionMean(): float
 | 
						|
    {
 | 
						|
        return $this->precisionMean;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getNormalizationConstant(): float
 | 
						|
    {
 | 
						|
        // Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf
 | 
						|
        return 1.0 / (self::M_SQRT_2_PI * $this->standardDeviation);
 | 
						|
    }
 | 
						|
 | 
						|
    public static function fromPrecisionMean(float $precisionMean, float $precision): self
 | 
						|
    {
 | 
						|
        $result = new GaussianDistribution();
 | 
						|
        $result->precision = $precision;
 | 
						|
        $result->precisionMean = $precisionMean;
 | 
						|
 | 
						|
        if ($precision != 0) {
 | 
						|
            $result->variance = 1.0 / $precision;
 | 
						|
            $result->standardDeviation = sqrt($result->variance);
 | 
						|
            $result->mean = $result->precisionMean / $result->precision;
 | 
						|
        } else {
 | 
						|
            $result->variance = \INF;
 | 
						|
            $result->standardDeviation = \INF;
 | 
						|
            $result->mean = \NAN;
 | 
						|
        }
 | 
						|
 | 
						|
        return $result;
 | 
						|
    }
 | 
						|
 | 
						|
    // For details, see http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
 | 
						|
    // for multiplication, the precision mean ones are easier to write :)
 | 
						|
    public static function multiply(GaussianDistribution $left, GaussianDistribution $right): self
 | 
						|
    {
 | 
						|
        return GaussianDistribution::fromPrecisionMean($left->precisionMean + $right->precisionMean, $left->precision + $right->precision);
 | 
						|
    }
 | 
						|
 | 
						|
    // Computes the absolute difference between two Gaussians
 | 
						|
    public static function absoluteDifference(GaussianDistribution $left, GaussianDistribution $right): float
 | 
						|
    {
 | 
						|
        return max(
 | 
						|
            abs($left->precisionMean - $right->precisionMean),
 | 
						|
            sqrt(abs($left->precision - $right->precision))
 | 
						|
        );
 | 
						|
    }
 | 
						|
 | 
						|
    // Computes the absolute difference between two Gaussians
 | 
						|
    public static function subtract(GaussianDistribution $left, GaussianDistribution $right): float
 | 
						|
    {
 | 
						|
        return GaussianDistribution::absoluteDifference($left, $right);
 | 
						|
    }
 | 
						|
 | 
						|
    public static function logProductNormalization(GaussianDistribution $left, GaussianDistribution $right): float
 | 
						|
    {
 | 
						|
        if (($left->precision == 0) || ($right->precision == 0)) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        $varianceSum = $left->variance + $right->variance;
 | 
						|
        $meanDifference = $left->mean - $right->mean;
 | 
						|
 | 
						|
        return -self::M_LOG_SQRT_2_PI - (log($varianceSum) / 2.0) - (BasicMath::square($meanDifference) / (2.0 * $varianceSum));
 | 
						|
    }
 | 
						|
 | 
						|
    public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator): self
 | 
						|
    {
 | 
						|
        return GaussianDistribution::fromPrecisionMean(
 | 
						|
            $numerator->precisionMean - $denominator->precisionMean,
 | 
						|
            $numerator->precision - $denominator->precision
 | 
						|
        );
 | 
						|
    }
 | 
						|
 | 
						|
    public static function logRatioNormalization(GaussianDistribution $numerator, GaussianDistribution $denominator): float
 | 
						|
    {
 | 
						|
        if (($numerator->precision == 0) || ($denominator->precision == 0)) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        $varianceDifference = $denominator->variance - $numerator->variance;
 | 
						|
        $meanDifference = $numerator->mean - $denominator->mean;
 | 
						|
 | 
						|
        return log($denominator->variance) + self::M_LOG_SQRT_2_PI - log($varianceDifference) / 2.0 +
 | 
						|
        BasicMath::square($meanDifference) / (2 * $varianceDifference);
 | 
						|
    }
 | 
						|
 | 
						|
    public static function at(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
 | 
						|
    {
 | 
						|
        // See http://mathworld.wolfram.com/NormalDistribution.html
 | 
						|
        //                1              -(x-mean)^2 / (2*stdDev^2)
 | 
						|
        // P(x) = ------------------- * e
 | 
						|
        //        stdDev * sqrt(2*pi)
 | 
						|
 | 
						|
        $multiplier = 1.0 / ($standardDeviation * self::M_SQRT_2_PI);
 | 
						|
        $expPart = exp((-1.0 * BasicMath::square($x - $mean)) / (2 * BasicMath::square($standardDeviation)));
 | 
						|
 | 
						|
        return $multiplier * $expPart;
 | 
						|
    }
 | 
						|
 | 
						|
    public static function cumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
 | 
						|
    {
 | 
						|
        $result = GaussianDistribution::errorFunctionCumulativeTo(-M_SQRT1_2 * $x);
 | 
						|
 | 
						|
        return 0.5 * $result;
 | 
						|
    }
 | 
						|
 | 
						|
    private static function errorFunctionCumulativeTo(float $x): float
 | 
						|
    {
 | 
						|
        // Derived from page 265 of Numerical Recipes 3rd Edition
 | 
						|
        $z = abs($x);
 | 
						|
 | 
						|
        $t = 2.0 / (2.0 + $z);
 | 
						|
        $ty = 4 * $t - 2;
 | 
						|
 | 
						|
        $coefficients = [
 | 
						|
            -1.3026537197817094,
 | 
						|
            6.4196979235649026e-1,
 | 
						|
            1.9476473204185836e-2,
 | 
						|
            -9.561514786808631e-3,
 | 
						|
            -9.46595344482036e-4,
 | 
						|
            3.66839497852761e-4,
 | 
						|
            4.2523324806907e-5,
 | 
						|
            -2.0278578112534e-5,
 | 
						|
            -1.624290004647e-6,
 | 
						|
            1.303655835580e-6,
 | 
						|
            1.5626441722e-8,
 | 
						|
            -8.5238095915e-8,
 | 
						|
            6.529054439e-9,
 | 
						|
            5.059343495e-9,
 | 
						|
            -9.91364156e-10,
 | 
						|
            -2.27365122e-10,
 | 
						|
            9.6467911e-11,
 | 
						|
            2.394038e-12,
 | 
						|
            -6.886027e-12,
 | 
						|
            8.94487e-13,
 | 
						|
            3.13092e-13,
 | 
						|
            -1.12708e-13,
 | 
						|
            3.81e-16,
 | 
						|
            7.106e-15,
 | 
						|
            -1.523e-15,
 | 
						|
            -9.4e-17,
 | 
						|
            1.21e-16,
 | 
						|
            -2.8e-17,
 | 
						|
        ];
 | 
						|
 | 
						|
        $ncof = count($coefficients);
 | 
						|
        $d = 0.0;
 | 
						|
        $dd = 0.0;
 | 
						|
 | 
						|
        for ($j = $ncof - 1; $j > 0; $j--) {
 | 
						|
            $tmp = $d;
 | 
						|
            $d = $ty * $d - $dd + $coefficients[$j];
 | 
						|
            $dd = $tmp;
 | 
						|
        }
 | 
						|
 | 
						|
        $ans = $t * exp(-$z * $z + 0.5 * ($coefficients[0] + $ty * $d) - $dd);
 | 
						|
 | 
						|
        return ($x >= 0.0) ? $ans : (2.0 - $ans);
 | 
						|
    }
 | 
						|
 | 
						|
    private static function inverseErrorFunctionCumulativeTo(float $p): float
 | 
						|
    {
 | 
						|
        // From page 265 of numerical recipes
 | 
						|
 | 
						|
        if ($p >= 2.0) {
 | 
						|
            return -100;
 | 
						|
        }
 | 
						|
        if ($p <= 0.0) {
 | 
						|
            return 100;
 | 
						|
        }
 | 
						|
 | 
						|
        $pp = ($p < 1.0) ? $p : 2 - $p;
 | 
						|
        $t = sqrt(-2 * log($pp / 2.0)); // Initial guess
 | 
						|
        $x = -M_SQRT1_2 * ((2.30753 + $t * 0.27061) / (1.0 + $t * (0.99229 + $t * 0.04481)) - $t);
 | 
						|
 | 
						|
        for ($j = 0; $j < 2; $j++) {
 | 
						|
            $err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp;
 | 
						|
            $x += $err / (M_2_SQRTPI * exp(-BasicMath::square($x)) - $x * $err); // Halley
 | 
						|
        }
 | 
						|
 | 
						|
        return ($p < 1.0) ? $x : -$x;
 | 
						|
    }
 | 
						|
 | 
						|
    public static function inverseCumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
 | 
						|
    {
 | 
						|
        // From numerical recipes, page 320
 | 
						|
        return $mean - M_SQRT2 * $standardDeviation * GaussianDistribution::inverseErrorFunctionCumulativeTo(2 * $x);
 | 
						|
    }
 | 
						|
 | 
						|
    public function __toString(): string
 | 
						|
    {
 | 
						|
        return sprintf('mean=%.4f standardDeviation=%.4f', $this->mean, $this->standardDeviation);
 | 
						|
    }
 | 
						|
}
 |