* @copyright 2010 Jeff Moser */ class GaussianDistribution implements \Stringable { //sqrt(2*pi) //from https://www.wolframalpha.com/input?i=sqrt%282*pi%29 private const M_SQRT_2_PI = 2.5066282746310005024157652848110452530069867406099383166299235763; //log(sqrt(2*pi)) //From https://www.wolframalpha.com/input?i=log%28sqrt%282*pi%29%29 private const M_LOG_SQRT_2_PI = 0.9189385332046727417803297364056176398613974736377834128171515404; // precision and precisionMean are used because they make multiplying and dividing simpler // (the the accompanying math paper for more details) private float $precision; private float $precisionMean; private float $variance; public function __construct(private float $mean = 0.0, private float $standardDeviation = 1.0) { $this->variance = BasicMath::square($standardDeviation); if ($this->variance != 0) { $this->precision = 1.0 / $this->variance; $this->precisionMean = $this->precision * $this->mean; } else { $this->precision = \INF; $this->precisionMean = $this->mean == 0 ? 0 : \INF; } } public function getMean(): float { return $this->mean; } public function getVariance(): float { return $this->variance; } public function getStandardDeviation(): float { return $this->standardDeviation; } public function getPrecision(): float { return $this->precision; } public function getPrecisionMean(): float { return $this->precisionMean; } public function getNormalizationConstant(): float { // Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf return 1.0 / (self::M_SQRT_2_PI * $this->standardDeviation); } public static function fromPrecisionMean(float $precisionMean, float $precision): self { $result = new GaussianDistribution(); $result->precision = $precision; $result->precisionMean = $precisionMean; if ($precision != 0) { $result->variance = 1.0 / $precision; $result->standardDeviation = sqrt($result->variance); $result->mean = $result->precisionMean / $result->precision; } else { $result->variance = \INF; $result->standardDeviation = \INF; $result->mean = \NAN; } return $result; } // For details, see http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf // for multiplication, the precision mean ones are easier to write :) public static function multiply(GaussianDistribution $left, GaussianDistribution $right): self { return GaussianDistribution::fromPrecisionMean($left->precisionMean + $right->precisionMean, $left->precision + $right->precision); } // Computes the absolute difference between two Gaussians public static function absoluteDifference(GaussianDistribution $left, GaussianDistribution $right): float { return max( abs($left->precisionMean - $right->precisionMean), sqrt(abs($left->precision - $right->precision)) ); } // Computes the absolute difference between two Gaussians public static function subtract(GaussianDistribution $left, GaussianDistribution $right): float { return GaussianDistribution::absoluteDifference($left, $right); } public static function logProductNormalization(GaussianDistribution $left, GaussianDistribution $right): float { if (($left->precision == 0) || ($right->precision == 0)) { return 0; } $varianceSum = $left->variance + $right->variance; $meanDifference = $left->mean - $right->mean; return -self::M_LOG_SQRT_2_PI - (log($varianceSum) / 2.0) - (BasicMath::square($meanDifference) / (2.0 * $varianceSum)); } public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator): self { return GaussianDistribution::fromPrecisionMean( $numerator->precisionMean - $denominator->precisionMean, $numerator->precision - $denominator->precision ); } public static function logRatioNormalization(GaussianDistribution $numerator, GaussianDistribution $denominator): float { if (($numerator->precision == 0) || ($denominator->precision == 0)) { return 0; } $varianceDifference = $denominator->variance - $numerator->variance; $meanDifference = $numerator->mean - $denominator->mean; return log($denominator->variance) + self::M_LOG_SQRT_2_PI - log($varianceDifference) / 2.0 + BasicMath::square($meanDifference) / (2 * $varianceDifference); } public static function at(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float { // See http://mathworld.wolfram.com/NormalDistribution.html // 1 -(x-mean)^2 / (2*stdDev^2) // P(x) = ------------------- * e // stdDev * sqrt(2*pi) $multiplier = 1.0 / ($standardDeviation * self::M_SQRT_2_PI); $expPart = exp((-1.0 * BasicMath::square($x - $mean)) / (2 * BasicMath::square($standardDeviation))); return $multiplier * $expPart; } public static function cumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float { $result = GaussianDistribution::errorFunctionCumulativeTo(-M_SQRT1_2 * $x); return 0.5 * $result; } private static function errorFunctionCumulativeTo(float $x): float { // Derived from page 265 of Numerical Recipes 3rd Edition $z = abs($x); $t = 2.0 / (2.0 + $z); $ty = 4 * $t - 2; $coefficients = [ -1.3026537197817094, 6.4196979235649026e-1, 1.9476473204185836e-2, -9.561514786808631e-3, -9.46595344482036e-4, 3.66839497852761e-4, 4.2523324806907e-5, -2.0278578112534e-5, -1.624290004647e-6, 1.303655835580e-6, 1.5626441722e-8, -8.5238095915e-8, 6.529054439e-9, 5.059343495e-9, -9.91364156e-10, -2.27365122e-10, 9.6467911e-11, 2.394038e-12, -6.886027e-12, 8.94487e-13, 3.13092e-13, -1.12708e-13, 3.81e-16, 7.106e-15, -1.523e-15, -9.4e-17, 1.21e-16, -2.8e-17, ]; $ncof = count($coefficients); $d = 0.0; $dd = 0.0; for ($j = $ncof - 1; $j > 0; $j--) { $tmp = $d; $d = $ty * $d - $dd + $coefficients[$j]; $dd = $tmp; } $ans = $t * exp(-$z * $z + 0.5 * ($coefficients[0] + $ty * $d) - $dd); return ($x >= 0.0) ? $ans : (2.0 - $ans); } private static function inverseErrorFunctionCumulativeTo(float $p): float { // From page 265 of numerical recipes if ($p >= 2.0) { return -100; } if ($p <= 0.0) { return 100; } $pp = ($p < 1.0) ? $p : 2 - $p; $t = sqrt(-2 * log($pp / 2.0)); // Initial guess $x = -M_SQRT1_2 * ((2.30753 + $t * 0.27061) / (1.0 + $t * (0.99229 + $t * 0.04481)) - $t); for ($j = 0; $j < 2; $j++) { $err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp; $x += $err / (M_2_SQRTPI * exp(-BasicMath::square($x)) - $x * $err); // Halley } return ($p < 1.0) ? $x : -$x; } public static function inverseCumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float { // From numerical recipes, page 320 return $mean - M_SQRT2 * $standardDeviation * GaussianDistribution::inverseErrorFunctionCumulativeTo(2 * $x); } public function __toString(): string { return sprintf('mean=%.4f standardDeviation=%.4f', $this->mean, $this->standardDeviation); } }