524 lines
17 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
namespace Moserware.Numerics
{
/// <summary>
/// Represents an MxN matrix with double precision values.
/// </summary>
internal class Matrix
{
// Anything smaller than this will be assumed to be rounding error in terms of equality matching
private const int FractionalDigitsToRoundTo = 10;
private static readonly double ErrorTolerance = Math.Pow(0.1, FractionalDigitsToRoundTo); // e.g. 1/10^10
protected double[][] _MatrixRowValues;
// Note: some properties like Determinant, Inverse, etc are properties instead
// of methods to make the syntax look nicer even though this sort of goes against
// Framework Design Guidelines that properties should be "cheap" since it could take
// a long time to compute these properties if the matrices are "big."
protected Matrix()
{
}
public Matrix(int rows, int columns, params double[] allRowValues)
{
Rows = rows;
Columns = columns;
_MatrixRowValues = new double[rows][];
int currentIndex = 0;
for (int currentRow = 0; currentRow < Rows; currentRow++)
{
_MatrixRowValues[currentRow] = new double[Columns];
for (int currentColumn = 0; currentColumn < Columns; currentColumn++)
{
if ((allRowValues != null) && (currentIndex < allRowValues.Length))
{
_MatrixRowValues[currentRow][currentColumn] = allRowValues[currentIndex++];
}
}
}
}
public Matrix(double[][] rowValues)
{
if (!rowValues.All(row => row.Length == rowValues[0].Length))
{
throw new ArgumentException("All rows must be the same length!");
}
Rows = rowValues.Length;
Columns = rowValues[0].Length;
_MatrixRowValues = rowValues;
}
protected Matrix(int rows, int columns, double[][] matrixRowValues)
{
Rows = rows;
Columns = columns;
_MatrixRowValues = matrixRowValues;
}
public Matrix(int rows, int columns, IEnumerable<IEnumerable<double>> columnValues)
: this(rows, columns)
{
int columnIndex = 0;
foreach (var currentColumn in columnValues)
{
int rowIndex = 0;
foreach (double currentColumnValue in currentColumn)
{
_MatrixRowValues[rowIndex++][columnIndex] = currentColumnValue;
}
columnIndex++;
}
}
public int Rows { get; protected set; }
public int Columns { get; protected set; }
public double this[int row, int column]
{
get { return _MatrixRowValues[row][column]; }
}
public Matrix Transpose
{
get
{
// Just flip everything
var transposeMatrix = new double[Columns][];
for (int currentRowTransposeMatrix = 0;
currentRowTransposeMatrix < Columns;
currentRowTransposeMatrix++)
{
var transposeMatrixCurrentRowColumnValues = new double[Rows];
transposeMatrix[currentRowTransposeMatrix] = transposeMatrixCurrentRowColumnValues;
for (int currentColumnTransposeMatrix = 0;
currentColumnTransposeMatrix < Rows;
currentColumnTransposeMatrix++)
{
transposeMatrixCurrentRowColumnValues[currentColumnTransposeMatrix] =
_MatrixRowValues[currentColumnTransposeMatrix][currentRowTransposeMatrix];
}
}
return new Matrix(Columns, Rows, transposeMatrix);
}
}
private bool IsSquare
{
get { return (Rows == Columns) && Rows > 0; }
}
public double Determinant
{
get
{
// Basic argument checking
if (!IsSquare)
{
throw new NotSupportedException("Matrix must be square!");
}
if (Rows == 1)
{
// Really happy path :)
return _MatrixRowValues[0][0];
}
if (Rows == 2)
{
// Happy path!
// Given:
// | a b |
// | c d |
// The determinant is ad - bc
double a = _MatrixRowValues[0][0];
double b = _MatrixRowValues[0][1];
double c = _MatrixRowValues[1][0];
double d = _MatrixRowValues[1][1];
return a*d - b*c;
}
// I use the Laplace expansion here since it's straightforward to implement.
// It's O(n^2) and my implementation is especially poor performing, but the
// core idea is there. Perhaps I should replace it with a better algorithm
// later.
// See http://en.wikipedia.org/wiki/Laplace_expansion for details
double result = 0.0;
// I expand along the first row
for (int currentColumn = 0; currentColumn < Columns; currentColumn++)
{
double firstRowColValue = _MatrixRowValues[0][currentColumn];
double cofactor = GetCofactor(0, currentColumn);
double itemToAdd = firstRowColValue*cofactor;
result += itemToAdd;
}
return result;
}
}
public Matrix Adjugate
{
get
{
if (!IsSquare)
{
throw new ArgumentException("Matrix must be square!");
}
// See http://en.wikipedia.org/wiki/Adjugate_matrix
if (Rows == 2)
{
// Happy path!
// Adjugate of:
// | a b |
// | c d |
// is
// | d -b |
// | -c a |
double a = _MatrixRowValues[0][0];
double b = _MatrixRowValues[0][1];
double c = _MatrixRowValues[1][0];
double d = _MatrixRowValues[1][1];
return new SquareMatrix(d, -b,
-c, a);
}
// The idea is that it's the transpose of the cofactors
var result = new double[Columns][];
for (int currentColumn = 0; currentColumn < Columns; currentColumn++)
{
result[currentColumn] = new double[Rows];
for (int currentRow = 0; currentRow < Rows; currentRow++)
{
result[currentColumn][currentRow] = GetCofactor(currentRow, currentColumn);
}
}
return new Matrix(result);
}
}
public Matrix Inverse
{
get
{
if ((Rows == 1) && (Columns == 1))
{
return new SquareMatrix(1.0/_MatrixRowValues[0][0]);
}
// Take the simple approach:
// http://en.wikipedia.org/wiki/Cramer%27s_rule#Finding_inverse_matrix
return (1.0/Determinant)*Adjugate;
}
}
public static Matrix operator *(double scalarValue, Matrix matrix)
{
int rows = matrix.Rows;
int columns = matrix.Columns;
var newValues = new double[rows][];
for (int currentRow = 0; currentRow < rows; currentRow++)
{
var newRowColumnValues = new double[columns];
newValues[currentRow] = newRowColumnValues;
for (int currentColumn = 0; currentColumn < columns; currentColumn++)
{
newRowColumnValues[currentColumn] = scalarValue*matrix._MatrixRowValues[currentRow][currentColumn];
}
}
return new Matrix(rows, columns, newValues);
}
public static Matrix operator +(Matrix left, Matrix right)
{
if ((left.Rows != right.Rows) || (left.Columns != right.Columns))
{
throw new ArgumentException("Matrices must be of the same size");
}
// simple addition of each item
var resultMatrix = new double[left.Rows][];
for (int currentRow = 0; currentRow < left.Rows; currentRow++)
{
var rowColumnValues = new double[right.Columns];
resultMatrix[currentRow] = rowColumnValues;
for (int currentColumn = 0; currentColumn < right.Columns; currentColumn++)
{
rowColumnValues[currentColumn] = left._MatrixRowValues[currentRow][currentColumn]
+
right._MatrixRowValues[currentRow][currentColumn];
}
}
return new Matrix(left.Rows, right.Columns, resultMatrix);
}
public static Matrix operator *(Matrix left, Matrix right)
{
// Just your standard matrix multiplication.
// See http://en.wikipedia.org/wiki/Matrix_multiplication for details
if (left.Columns != right.Rows)
{
throw new ArgumentException("The width of the left matrix must match the height of the right matrix",
"right");
}
int resultRows = left.Rows;
int resultColumns = right.Columns;
var resultMatrix = new double[resultRows][];
for (int currentRow = 0; currentRow < resultRows; currentRow++)
{
resultMatrix[currentRow] = new double[resultColumns];
for (int currentColumn = 0; currentColumn < resultColumns; currentColumn++)
{
double productValue = 0;
for (int vectorIndex = 0; vectorIndex < left.Columns; vectorIndex++)
{
double leftValue = left._MatrixRowValues[currentRow][vectorIndex];
double rightValue = right._MatrixRowValues[vectorIndex][currentColumn];
double vectorIndexProduct = leftValue*rightValue;
productValue += vectorIndexProduct;
}
resultMatrix[currentRow][currentColumn] = productValue;
}
}
return new Matrix(resultRows, resultColumns, resultMatrix);
}
private Matrix GetMinorMatrix(int rowToRemove, int columnToRemove)
{
// See http://en.wikipedia.org/wiki/Minor_(linear_algebra)
// I'm going to use a horribly naïve algorithm... because I can :)
var result = new double[Rows - 1][];
int resultRow = 0;
for (int currentRow = 0; currentRow < Rows; currentRow++)
{
if (currentRow == rowToRemove)
{
continue;
}
result[resultRow] = new double[Columns - 1];
int resultColumn = 0;
for (int currentColumn = 0; currentColumn < Columns; currentColumn++)
{
if (currentColumn == columnToRemove)
{
continue;
}
result[resultRow][resultColumn] = _MatrixRowValues[currentRow][currentColumn];
resultColumn++;
}
resultRow++;
}
return new Matrix(Rows - 1, Columns - 1, result);
}
private double GetCofactor(int rowToRemove, int columnToRemove)
{
// See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for details
// REVIEW: should things be reversed since I'm 0 indexed?
int sum = rowToRemove + columnToRemove;
bool isEven = (sum%2 == 0);
if (isEven)
{
return GetMinorMatrix(rowToRemove, columnToRemove).Determinant;
}
else
{
return -1.0*GetMinorMatrix(rowToRemove, columnToRemove).Determinant;
}
}
// Equality stuff
// See http://msdn.microsoft.com/en-us/library/ms173147.aspx
public static bool operator ==(Matrix a, Matrix b)
{
// If both are null, or both are same instance, return true.
if (ReferenceEquals(a, b))
{
return true;
}
// If one is null, but not both, return false.
if (((object) a == null) || ((object) b == null))
{
return false;
}
if ((a.Rows != b.Rows) || (a.Columns != b.Columns))
{
return false;
}
for (int currentRow = 0; currentRow < a.Rows; currentRow++)
{
for (int currentColumn = 0; currentColumn < a.Columns; currentColumn++)
{
double delta =
Math.Abs(a._MatrixRowValues[currentRow][currentColumn] -
b._MatrixRowValues[currentRow][currentColumn]);
if (delta > ErrorTolerance)
{
return false;
}
}
}
return true;
}
public static bool operator !=(Matrix a, Matrix b)
{
return !(a == b);
}
public override int GetHashCode()
{
double result = Rows;
result += 2*Columns;
unchecked
{
for (int currentRow = 0; currentRow < Rows; currentRow++)
{
bool eventRow = (currentRow%2) == 0;
double multiplier = eventRow ? 1.0 : 2.0;
for (int currentColumn = 0; currentColumn < Columns; currentColumn++)
{
double cellValue = _MatrixRowValues[currentRow][currentColumn];
double roundedValue = Math.Round(cellValue, FractionalDigitsToRoundTo);
result += multiplier*roundedValue;
}
}
}
// Ok, now convert that double to an int
byte[] resultBytes = BitConverter.GetBytes(result);
var finalBytes = new byte[4];
for (int i = 0; i < 4; i++)
{
finalBytes[i] = (byte) (resultBytes[i] ^ resultBytes[i + 4]);
}
int hashCode = BitConverter.ToInt32(finalBytes, 0);
return hashCode;
}
public override bool Equals(object obj)
{
var other = obj as Matrix;
if (other == null)
{
return base.Equals(obj);
}
return this == other;
}
}
internal class DiagonalMatrix : Matrix
{
public DiagonalMatrix(IList<double> diagonalValues)
: base(diagonalValues.Count, diagonalValues.Count)
{
for (int i = 0; i < diagonalValues.Count; i++)
{
_MatrixRowValues[i][i] = diagonalValues[i];
}
}
}
internal class Vector : Matrix
{
public Vector(IList<double> vectorValues)
: base(vectorValues.Count, 1, new IEnumerable<double>[] {vectorValues})
{
}
}
internal class SquareMatrix : Matrix
{
public SquareMatrix(params double[] allValues)
{
Rows = (int) Math.Sqrt(allValues.Length);
Columns = Rows;
int allValuesIndex = 0;
_MatrixRowValues = new double[Rows][];
for (int currentRow = 0; currentRow < Rows; currentRow++)
{
var currentRowValues = new double[Columns];
_MatrixRowValues[currentRow] = currentRowValues;
for (int currentColumn = 0; currentColumn < Columns; currentColumn++)
{
currentRowValues[currentColumn] = allValues[allValuesIndex++];
}
}
}
}
internal class IdentityMatrix : DiagonalMatrix
{
public IdentityMatrix(int rows)
: base(CreateDiagonal(rows))
{
}
private static double[] CreateDiagonal(int rows)
{
var result = new double[rows];
for (int i = 0; i < rows; i++)
{
result[i] = 1.0;
}
return result;
}
}
}