using System; using System.Collections.Generic; using System.Linq; namespace Moserware.Numerics { /// /// Represents an MxN matrix with double precision values. /// internal class Matrix { // Anything smaller than this will be assumed to be rounding error in terms of equality matching private const int FractionalDigitsToRoundTo = 10; private static readonly double ErrorTolerance = Math.Pow(0.1, FractionalDigitsToRoundTo); // e.g. 1/10^10 protected double[][] _MatrixRowValues; // Note: some properties like Determinant, Inverse, etc are properties instead // of methods to make the syntax look nicer even though this sort of goes against // Framework Design Guidelines that properties should be "cheap" since it could take // a long time to compute these properties if the matrices are "big." protected Matrix() { } public Matrix(int rows, int columns, params double[] allRowValues) { Rows = rows; Columns = columns; _MatrixRowValues = new double[rows][]; int currentIndex = 0; for (int currentRow = 0; currentRow < Rows; currentRow++) { _MatrixRowValues[currentRow] = new double[Columns]; for (int currentColumn = 0; currentColumn < Columns; currentColumn++) { if ((allRowValues != null) && (currentIndex < allRowValues.Length)) { _MatrixRowValues[currentRow][currentColumn] = allRowValues[currentIndex++]; } } } } public Matrix(double[][] rowValues) { if (!rowValues.All(row => row.Length == rowValues[0].Length)) { throw new ArgumentException("All rows must be the same length!"); } Rows = rowValues.Length; Columns = rowValues[0].Length; _MatrixRowValues = rowValues; } protected Matrix(int rows, int columns, double[][] matrixRowValues) { Rows = rows; Columns = columns; _MatrixRowValues = matrixRowValues; } public Matrix(int rows, int columns, IEnumerable> columnValues) : this(rows, columns) { int columnIndex = 0; foreach (var currentColumn in columnValues) { int rowIndex = 0; foreach (double currentColumnValue in currentColumn) { _MatrixRowValues[rowIndex++][columnIndex] = currentColumnValue; } columnIndex++; } } public int Rows { get; protected set; } public int Columns { get; protected set; } public double this[int row, int column] { get { return _MatrixRowValues[row][column]; } } public Matrix Transpose { get { // Just flip everything var transposeMatrix = new double[Columns][]; for (int currentRowTransposeMatrix = 0; currentRowTransposeMatrix < Columns; currentRowTransposeMatrix++) { var transposeMatrixCurrentRowColumnValues = new double[Rows]; transposeMatrix[currentRowTransposeMatrix] = transposeMatrixCurrentRowColumnValues; for (int currentColumnTransposeMatrix = 0; currentColumnTransposeMatrix < Rows; currentColumnTransposeMatrix++) { transposeMatrixCurrentRowColumnValues[currentColumnTransposeMatrix] = _MatrixRowValues[currentColumnTransposeMatrix][currentRowTransposeMatrix]; } } return new Matrix(Columns, Rows, transposeMatrix); } } private bool IsSquare { get { return (Rows == Columns) && Rows > 0; } } public double Determinant { get { // Basic argument checking if (!IsSquare) { throw new NotSupportedException("Matrix must be square!"); } if (Rows == 1) { // Really happy path :) return _MatrixRowValues[0][0]; } if (Rows == 2) { // Happy path! // Given: // | a b | // | c d | // The determinant is ad - bc double a = _MatrixRowValues[0][0]; double b = _MatrixRowValues[0][1]; double c = _MatrixRowValues[1][0]; double d = _MatrixRowValues[1][1]; return a*d - b*c; } // I use the Laplace expansion here since it's straightforward to implement. // It's O(n^2) and my implementation is especially poor performing, but the // core idea is there. Perhaps I should replace it with a better algorithm // later. // See http://en.wikipedia.org/wiki/Laplace_expansion for details double result = 0.0; // I expand along the first row for (int currentColumn = 0; currentColumn < Columns; currentColumn++) { double firstRowColValue = _MatrixRowValues[0][currentColumn]; double cofactor = GetCofactor(0, currentColumn); double itemToAdd = firstRowColValue*cofactor; result += itemToAdd; } return result; } } public Matrix Adjugate { get { if (!IsSquare) { throw new ArgumentException("Matrix must be square!"); } // See http://en.wikipedia.org/wiki/Adjugate_matrix if (Rows == 2) { // Happy path! // Adjugate of: // | a b | // | c d | // is // | d -b | // | -c a | double a = _MatrixRowValues[0][0]; double b = _MatrixRowValues[0][1]; double c = _MatrixRowValues[1][0]; double d = _MatrixRowValues[1][1]; return new SquareMatrix(d, -b, -c, a); } // The idea is that it's the transpose of the cofactors var result = new double[Columns][]; for (int currentColumn = 0; currentColumn < Columns; currentColumn++) { result[currentColumn] = new double[Rows]; for (int currentRow = 0; currentRow < Rows; currentRow++) { result[currentColumn][currentRow] = GetCofactor(currentRow, currentColumn); } } return new Matrix(result); } } public Matrix Inverse { get { if ((Rows == 1) && (Columns == 1)) { return new SquareMatrix(1.0/_MatrixRowValues[0][0]); } // Take the simple approach: // http://en.wikipedia.org/wiki/Cramer%27s_rule#Finding_inverse_matrix return (1.0/Determinant)*Adjugate; } } public static Matrix operator *(double scalarValue, Matrix matrix) { int rows = matrix.Rows; int columns = matrix.Columns; var newValues = new double[rows][]; for (int currentRow = 0; currentRow < rows; currentRow++) { var newRowColumnValues = new double[columns]; newValues[currentRow] = newRowColumnValues; for (int currentColumn = 0; currentColumn < columns; currentColumn++) { newRowColumnValues[currentColumn] = scalarValue*matrix._MatrixRowValues[currentRow][currentColumn]; } } return new Matrix(rows, columns, newValues); } public static Matrix operator +(Matrix left, Matrix right) { if ((left.Rows != right.Rows) || (left.Columns != right.Columns)) { throw new ArgumentException("Matrices must be of the same size"); } // simple addition of each item var resultMatrix = new double[left.Rows][]; for (int currentRow = 0; currentRow < left.Rows; currentRow++) { var rowColumnValues = new double[right.Columns]; resultMatrix[currentRow] = rowColumnValues; for (int currentColumn = 0; currentColumn < right.Columns; currentColumn++) { rowColumnValues[currentColumn] = left._MatrixRowValues[currentRow][currentColumn] + right._MatrixRowValues[currentRow][currentColumn]; } } return new Matrix(left.Rows, right.Columns, resultMatrix); } public static Matrix operator *(Matrix left, Matrix right) { // Just your standard matrix multiplication. // See http://en.wikipedia.org/wiki/Matrix_multiplication for details if (left.Columns != right.Rows) { throw new ArgumentException("The width of the left matrix must match the height of the right matrix", "right"); } int resultRows = left.Rows; int resultColumns = right.Columns; var resultMatrix = new double[resultRows][]; for (int currentRow = 0; currentRow < resultRows; currentRow++) { resultMatrix[currentRow] = new double[resultColumns]; for (int currentColumn = 0; currentColumn < resultColumns; currentColumn++) { double productValue = 0; for (int vectorIndex = 0; vectorIndex < left.Columns; vectorIndex++) { double leftValue = left._MatrixRowValues[currentRow][vectorIndex]; double rightValue = right._MatrixRowValues[vectorIndex][currentColumn]; double vectorIndexProduct = leftValue*rightValue; productValue += vectorIndexProduct; } resultMatrix[currentRow][currentColumn] = productValue; } } return new Matrix(resultRows, resultColumns, resultMatrix); } private Matrix GetMinorMatrix(int rowToRemove, int columnToRemove) { // See http://en.wikipedia.org/wiki/Minor_(linear_algebra) // I'm going to use a horribly naïve algorithm... because I can :) var result = new double[Rows - 1][]; int resultRow = 0; for (int currentRow = 0; currentRow < Rows; currentRow++) { if (currentRow == rowToRemove) { continue; } result[resultRow] = new double[Columns - 1]; int resultColumn = 0; for (int currentColumn = 0; currentColumn < Columns; currentColumn++) { if (currentColumn == columnToRemove) { continue; } result[resultRow][resultColumn] = _MatrixRowValues[currentRow][currentColumn]; resultColumn++; } resultRow++; } return new Matrix(Rows - 1, Columns - 1, result); } private double GetCofactor(int rowToRemove, int columnToRemove) { // See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for details // REVIEW: should things be reversed since I'm 0 indexed? int sum = rowToRemove + columnToRemove; bool isEven = (sum%2 == 0); if (isEven) { return GetMinorMatrix(rowToRemove, columnToRemove).Determinant; } else { return -1.0*GetMinorMatrix(rowToRemove, columnToRemove).Determinant; } } // Equality stuff // See http://msdn.microsoft.com/en-us/library/ms173147.aspx public static bool operator ==(Matrix a, Matrix b) { // If both are null, or both are same instance, return true. if (ReferenceEquals(a, b)) { return true; } // If one is null, but not both, return false. if (((object) a == null) || ((object) b == null)) { return false; } if ((a.Rows != b.Rows) || (a.Columns != b.Columns)) { return false; } for (int currentRow = 0; currentRow < a.Rows; currentRow++) { for (int currentColumn = 0; currentColumn < a.Columns; currentColumn++) { double delta = Math.Abs(a._MatrixRowValues[currentRow][currentColumn] - b._MatrixRowValues[currentRow][currentColumn]); if (delta > ErrorTolerance) { return false; } } } return true; } public static bool operator !=(Matrix a, Matrix b) { return !(a == b); } public override int GetHashCode() { double result = Rows; result += 2*Columns; unchecked { for (int currentRow = 0; currentRow < Rows; currentRow++) { bool eventRow = (currentRow%2) == 0; double multiplier = eventRow ? 1.0 : 2.0; for (int currentColumn = 0; currentColumn < Columns; currentColumn++) { double cellValue = _MatrixRowValues[currentRow][currentColumn]; double roundedValue = Math.Round(cellValue, FractionalDigitsToRoundTo); result += multiplier*roundedValue; } } } // Ok, now convert that double to an int byte[] resultBytes = BitConverter.GetBytes(result); var finalBytes = new byte[4]; for (int i = 0; i < 4; i++) { finalBytes[i] = (byte) (resultBytes[i] ^ resultBytes[i + 4]); } int hashCode = BitConverter.ToInt32(finalBytes, 0); return hashCode; } public override bool Equals(object obj) { var other = obj as Matrix; if (other == null) { return base.Equals(obj); } return this == other; } } internal class DiagonalMatrix : Matrix { public DiagonalMatrix(IList diagonalValues) : base(diagonalValues.Count, diagonalValues.Count) { for (int i = 0; i < diagonalValues.Count; i++) { _MatrixRowValues[i][i] = diagonalValues[i]; } } } internal class Vector : Matrix { public Vector(IList vectorValues) : base(vectorValues.Count, 1, new IEnumerable[] {vectorValues}) { } } internal class SquareMatrix : Matrix { public SquareMatrix(params double[] allValues) { Rows = (int) Math.Sqrt(allValues.Length); Columns = Rows; int allValuesIndex = 0; _MatrixRowValues = new double[Rows][]; for (int currentRow = 0; currentRow < Rows; currentRow++) { var currentRowValues = new double[Columns]; _MatrixRowValues[currentRow] = currentRowValues; for (int currentColumn = 0; currentColumn < Columns; currentColumn++) { currentRowValues[currentColumn] = allValues[allValuesIndex++]; } } } } internal class IdentityMatrix : DiagonalMatrix { public IdentityMatrix(int rows) : base(CreateDiagonal(rows)) { } private static double[] CreateDiagonal(int rows) { var result = new double[rows]; for (int i = 0; i < rows; i++) { result[i] = 1.0; } return result; } } }