Files
trueskill/src/Numerics/GaussianDistribution.php

263 lines
8.3 KiB
PHP
Raw Normal View History

<?php namespace Moserware\Skills\Numerics;
/**
* Computes Gaussian (bell curve) values.
*
* @author Jeff Moser <jeff@moserware.com>
* @copyright 2010 Jeff Moser
*/
class GaussianDistribution
{
private $_mean;
private $_standardDeviation;
// precision and precisionMean are used because they make multiplying and dividing simpler
// (the the accompanying math paper for more details)
private $_precision;
private $_precisionMean;
private $_variance;
public function __construct($mean = 0.0, $standardDeviation = 1.0)
{
$this->_mean = $mean;
$this->_standardDeviation = $standardDeviation;
2016-05-24 15:12:29 +02:00
$this->_variance = BasicMath::square($standardDeviation);
2010-09-30 08:25:31 -04:00
if ($this->_variance != 0) {
$this->_precision = 1.0 / $this->_variance;
$this->_precisionMean = $this->_precision * $this->_mean;
} else {
2010-09-30 08:25:31 -04:00
$this->_precision = \INF;
if ($this->_mean == 0) {
2010-09-30 08:25:31 -04:00
$this->_precisionMean = 0;
} else {
2010-09-30 08:25:31 -04:00
$this->_precisionMean = \INF;
}
}
}
public function getMean()
{
return $this->_mean;
}
public function getVariance()
{
return $this->_variance;
}
public function getStandardDeviation()
{
return $this->_standardDeviation;
}
public function getPrecision()
{
return $this->_precision;
}
public function getPrecisionMean()
{
return $this->_precisionMean;
}
public function getNormalizationConstant()
{
// Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf
return 1.0 / (sqrt(2 * M_PI) * $this->_standardDeviation);
}
public function __clone()
{
$result = new GaussianDistribution();
$result->_mean = $this->_mean;
$result->_standardDeviation = $this->_standardDeviation;
$result->_variance = $this->_variance;
$result->_precision = $this->_precision;
$result->_precisionMean = $this->_precisionMean;
return $result;
}
public static function fromPrecisionMean($precisionMean, $precision)
{
$result = new GaussianDistribution();
$result->_precision = $precision;
$result->_precisionMean = $precisionMean;
if ($precision != 0) {
$result->_variance = 1.0 / $precision;
$result->_standardDeviation = sqrt($result->_variance);
$result->_mean = $result->_precisionMean / $result->_precision;
} else {
$result->_variance = \INF;
$result->_standardDeviation = \INF;
$result->_mean = \NAN;
}
return $result;
}
// For details, see http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
// for multiplication, the precision mean ones are easier to write :)
public static function multiply(GaussianDistribution $left, GaussianDistribution $right)
{
return GaussianDistribution::fromPrecisionMean($left->_precisionMean + $right->_precisionMean, $left->_precision + $right->_precision);
}
// Computes the absolute difference between two Gaussians
public static function absoluteDifference(GaussianDistribution $left, GaussianDistribution $right)
{
return max(
abs($left->_precisionMean - $right->_precisionMean),
sqrt(abs($left->_precision - $right->_precision))
);
}
// Computes the absolute difference between two Gaussians
public static function subtract(GaussianDistribution $left, GaussianDistribution $right)
{
return GaussianDistribution::absoluteDifference($left, $right);
}
public static function logProductNormalization(GaussianDistribution $left, GaussianDistribution $right)
{
if (($left->_precision == 0) || ($right->_precision == 0)) {
return 0;
}
$varianceSum = $left->_variance + $right->_variance;
$meanDifference = $left->_mean - $right->_mean;
$logSqrt2Pi = log(sqrt(2 * M_PI));
2016-05-24 15:12:29 +02:00
return -$logSqrt2Pi - (log($varianceSum) / 2.0) - (BasicMath::square($meanDifference) / (2.0 * $varianceSum));
}
public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator)
{
return GaussianDistribution::fromPrecisionMean(
$numerator->_precisionMean - $denominator->_precisionMean,
$numerator->_precision - $denominator->_precision
);
}
public static function logRatioNormalization(GaussianDistribution $numerator, GaussianDistribution $denominator)
{
if (($numerator->_precision == 0) || ($denominator->_precision == 0)) {
return 0;
}
$varianceDifference = $denominator->_variance - $numerator->_variance;
$meanDifference = $numerator->_mean - $denominator->_mean;
$logSqrt2Pi = log(sqrt(2 * M_PI));
return log($denominator->_variance) + $logSqrt2Pi - log($varianceDifference) / 2.0 +
2016-05-24 15:12:29 +02:00
BasicMath::square($meanDifference) / (2 * $varianceDifference);
}
public static function at($x, $mean = 0.0, $standardDeviation = 1.0)
{
// See http://mathworld.wolfram.com/NormalDistribution.html
// 1 -(x-mean)^2 / (2*stdDev^2)
// P(x) = ------------------- * e
// stdDev * sqrt(2*pi)
$multiplier = 1.0 / ($standardDeviation * sqrt(2 * M_PI));
2016-05-24 15:12:29 +02:00
$expPart = exp((-1.0 * BasicMath::square($x - $mean)) / (2 * BasicMath::square($standardDeviation)));
$result = $multiplier * $expPart;
return $result;
}
public static function cumulativeTo($x, $mean = 0.0, $standardDeviation = 1.0)
{
$invsqrt2 = -0.707106781186547524400844362104;
$result = GaussianDistribution::errorFunctionCumulativeTo($invsqrt2 * $x);
return 0.5 * $result;
}
private static function errorFunctionCumulativeTo($x)
{
// Derived from page 265 of Numerical Recipes 3rd Edition
$z = abs($x);
$t = 2.0 / (2.0 + $z);
$ty = 4 * $t - 2;
$coefficients = array(
-1.3026537197817094,
6.4196979235649026e-1,
1.9476473204185836e-2,
-9.561514786808631e-3,
-9.46595344482036e-4,
3.66839497852761e-4,
4.2523324806907e-5,
-2.0278578112534e-5,
-1.624290004647e-6,
1.303655835580e-6,
1.5626441722e-8,
-8.5238095915e-8,
6.529054439e-9,
5.059343495e-9,
-9.91364156e-10,
-2.27365122e-10,
9.6467911e-11,
2.394038e-12,
-6.886027e-12,
8.94487e-13,
3.13092e-13,
-1.12708e-13,
3.81e-16,
7.106e-15,
-1.523e-15,
-9.4e-17,
1.21e-16,
-2.8e-17);
$ncof = count($coefficients);
$d = 0.0;
$dd = 0.0;
for ($j = $ncof - 1; $j > 0; $j--) {
$tmp = $d;
$d = $ty * $d - $dd + $coefficients[$j];
$dd = $tmp;
}
$ans = $t * exp(-$z * $z + 0.5 * ($coefficients[0] + $ty * $d) - $dd);
return ($x >= 0.0) ? $ans : (2.0 - $ans);
}
private static function inverseErrorFunctionCumulativeTo($p)
{
// From page 265 of numerical recipes
if ($p >= 2.0) {
return -100;
}
if ($p <= 0.0) {
return 100;
}
$pp = ($p < 1.0) ? $p : 2 - $p;
$t = sqrt(-2 * log($pp / 2.0)); // Initial guess
$x = -0.70711 * ((2.30753 + $t * 0.27061) / (1.0 + $t * (0.99229 + $t * 0.04481)) - $t);
for ($j = 0; $j < 2; $j++) {
$err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp;
2016-05-24 15:12:29 +02:00
$x += $err / (1.12837916709551257 * exp(-BasicMath::square($x)) - $x * $err); // Halley
}
return ($p < 1.0) ? $x : -$x;
}
public static function inverseCumulativeTo($x, $mean = 0.0, $standardDeviation = 1.0)
{
// From numerical recipes, page 320
return $mean - sqrt(2) * $standardDeviation * GaussianDistribution::inverseErrorFunctionCumulativeTo(2 * $x);
}
public function __toString()
{
return sprintf("mean=%.4f standardDeviation=%.4f", $this->_mean, $this->_standardDeviation);
}
}