* @copyright 2010 Jeff Moser */ class GaussianDistribution { private $_mean; private $_standardDeviation; // precision and precisionMean are used because they make multiplying and dividing simpler // (the the accompanying math paper for more details) private $_precision; private $_precisionMean; private $_variance; public function __construct($mean = 0.0, $standardDeviation = 1.0) { $this->_mean = $mean; $this->_standardDeviation = $standardDeviation; $this->_variance = BasicMath::square($standardDeviation); if ($this->_variance != 0) { $this->_precision = 1.0 / $this->_variance; $this->_precisionMean = $this->_precision * $this->_mean; } else { $this->_precision = \INF; if ($this->_mean == 0) { $this->_precisionMean = 0; } else { $this->_precisionMean = \INF; } } } public function getMean() { return $this->_mean; } public function getVariance() { return $this->_variance; } public function getStandardDeviation() { return $this->_standardDeviation; } public function getPrecision() { return $this->_precision; } public function getPrecisionMean() { return $this->_precisionMean; } public function getNormalizationConstant() { // Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf return 1.0 / (sqrt(2 * M_PI) * $this->_standardDeviation); } public function __clone() { $result = new GaussianDistribution(); $result->_mean = $this->_mean; $result->_standardDeviation = $this->_standardDeviation; $result->_variance = $this->_variance; $result->_precision = $this->_precision; $result->_precisionMean = $this->_precisionMean; return $result; } public static function fromPrecisionMean($precisionMean, $precision) { $result = new GaussianDistribution(); $result->_precision = $precision; $result->_precisionMean = $precisionMean; if ($precision != 0) { $result->_variance = 1.0 / $precision; $result->_standardDeviation = sqrt($result->_variance); $result->_mean = $result->_precisionMean / $result->_precision; } else { $result->_variance = \INF; $result->_standardDeviation = \INF; $result->_mean = \NAN; } return $result; } // For details, see http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf // for multiplication, the precision mean ones are easier to write :) public static function multiply(GaussianDistribution $left, GaussianDistribution $right) { return GaussianDistribution::fromPrecisionMean($left->_precisionMean + $right->_precisionMean, $left->_precision + $right->_precision); } // Computes the absolute difference between two Gaussians public static function absoluteDifference(GaussianDistribution $left, GaussianDistribution $right) { return max( abs($left->_precisionMean - $right->_precisionMean), sqrt(abs($left->_precision - $right->_precision)) ); } // Computes the absolute difference between two Gaussians public static function subtract(GaussianDistribution $left, GaussianDistribution $right) { return GaussianDistribution::absoluteDifference($left, $right); } public static function logProductNormalization(GaussianDistribution $left, GaussianDistribution $right) { if (($left->_precision == 0) || ($right->_precision == 0)) { return 0; } $varianceSum = $left->_variance + $right->_variance; $meanDifference = $left->_mean - $right->_mean; $logSqrt2Pi = log(sqrt(2 * M_PI)); return -$logSqrt2Pi - (log($varianceSum) / 2.0) - (BasicMath::square($meanDifference) / (2.0 * $varianceSum)); } public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator) { return GaussianDistribution::fromPrecisionMean( $numerator->_precisionMean - $denominator->_precisionMean, $numerator->_precision - $denominator->_precision ); } public static function logRatioNormalization(GaussianDistribution $numerator, GaussianDistribution $denominator) { if (($numerator->_precision == 0) || ($denominator->_precision == 0)) { return 0; } $varianceDifference = $denominator->_variance - $numerator->_variance; $meanDifference = $numerator->_mean - $denominator->_mean; $logSqrt2Pi = log(sqrt(2 * M_PI)); return log($denominator->_variance) + $logSqrt2Pi - log($varianceDifference) / 2.0 + BasicMath::square($meanDifference) / (2 * $varianceDifference); } public static function at($x, $mean = 0.0, $standardDeviation = 1.0) { // See http://mathworld.wolfram.com/NormalDistribution.html // 1 -(x-mean)^2 / (2*stdDev^2) // P(x) = ------------------- * e // stdDev * sqrt(2*pi) $multiplier = 1.0 / ($standardDeviation * sqrt(2 * M_PI)); $expPart = exp((-1.0 * BasicMath::square($x - $mean)) / (2 * BasicMath::square($standardDeviation))); $result = $multiplier * $expPart; return $result; } public static function cumulativeTo($x, $mean = 0.0, $standardDeviation = 1.0) { $invsqrt2 = -0.707106781186547524400844362104; $result = GaussianDistribution::errorFunctionCumulativeTo($invsqrt2 * $x); return 0.5 * $result; } private static function errorFunctionCumulativeTo($x) { // Derived from page 265 of Numerical Recipes 3rd Edition $z = abs($x); $t = 2.0 / (2.0 + $z); $ty = 4 * $t - 2; $coefficients = array( -1.3026537197817094, 6.4196979235649026e-1, 1.9476473204185836e-2, -9.561514786808631e-3, -9.46595344482036e-4, 3.66839497852761e-4, 4.2523324806907e-5, -2.0278578112534e-5, -1.624290004647e-6, 1.303655835580e-6, 1.5626441722e-8, -8.5238095915e-8, 6.529054439e-9, 5.059343495e-9, -9.91364156e-10, -2.27365122e-10, 9.6467911e-11, 2.394038e-12, -6.886027e-12, 8.94487e-13, 3.13092e-13, -1.12708e-13, 3.81e-16, 7.106e-15, -1.523e-15, -9.4e-17, 1.21e-16, -2.8e-17); $ncof = count($coefficients); $d = 0.0; $dd = 0.0; for ($j = $ncof - 1; $j > 0; $j--) { $tmp = $d; $d = $ty * $d - $dd + $coefficients[$j]; $dd = $tmp; } $ans = $t * exp(-$z * $z + 0.5 * ($coefficients[0] + $ty * $d) - $dd); return ($x >= 0.0) ? $ans : (2.0 - $ans); } private static function inverseErrorFunctionCumulativeTo($p) { // From page 265 of numerical recipes if ($p >= 2.0) { return -100; } if ($p <= 0.0) { return 100; } $pp = ($p < 1.0) ? $p : 2 - $p; $t = sqrt(-2 * log($pp / 2.0)); // Initial guess $x = -0.70711 * ((2.30753 + $t * 0.27061) / (1.0 + $t * (0.99229 + $t * 0.04481)) - $t); for ($j = 0; $j < 2; $j++) { $err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp; $x += $err / (1.12837916709551257 * exp(-BasicMath::square($x)) - $x * $err); // Halley } return ($p < 1.0) ? $x : -$x; } public static function inverseCumulativeTo($x, $mean = 0.0, $standardDeviation = 1.0) { // From numerical recipes, page 320 return $mean - sqrt(2) * $standardDeviation * GaussianDistribution::inverseErrorFunctionCumulativeTo(2 * $x); } public function __toString() { return sprintf("mean=%.4f standardDeviation=%.4f", $this->_mean, $this->_standardDeviation); } }