410 lines
14 KiB
Verilog
410 lines
14 KiB
Verilog
|
|
`timescale 1 ns / 1 ps
|
|
|
|
module simplevga_S00_AXI #
|
|
(
|
|
// Users to add parameters here
|
|
|
|
// User parameters ends
|
|
// Do not modify the parameters beyond this line
|
|
|
|
// Width of S_AXI data bus
|
|
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
|
// Width of S_AXI address bus
|
|
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
|
)
|
|
(
|
|
// Users to add ports here
|
|
output wire [C_S_AXI_DATA_WIDTH-1:0]slave_reg0,
|
|
output wire [C_S_AXI_DATA_WIDTH-1:0]slave_reg1,
|
|
output wire [C_S_AXI_DATA_WIDTH-1:0]slave_reg2,
|
|
// User ports ends
|
|
// Do not modify the ports beyond this line
|
|
|
|
// Global Clock Signal
|
|
input wire S_AXI_ACLK,
|
|
// Global Reset Signal. This Signal is Active LOW
|
|
input wire S_AXI_ARESETN,
|
|
// Write address (issued by master, acceped by Slave)
|
|
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
|
|
// Write channel Protection type. This signal indicates the
|
|
// privilege and security level of the transaction, and whether
|
|
// the transaction is a data access or an instruction access.
|
|
input wire [2 : 0] S_AXI_AWPROT,
|
|
// Write address valid. This signal indicates that the master signaling
|
|
// valid write address and control information.
|
|
input wire S_AXI_AWVALID,
|
|
// Write address ready. This signal indicates that the slave is ready
|
|
// to accept an address and associated control signals.
|
|
output wire S_AXI_AWREADY,
|
|
// Write data (issued by master, acceped by Slave)
|
|
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
|
|
// Write strobes. This signal indicates which byte lanes hold
|
|
// valid data. There is one write strobe bit for each eight
|
|
// bits of the write data bus.
|
|
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
|
|
// Write valid. This signal indicates that valid write
|
|
// data and strobes are available.
|
|
input wire S_AXI_WVALID,
|
|
// Write ready. This signal indicates that the slave
|
|
// can accept the write data.
|
|
output wire S_AXI_WREADY,
|
|
// Write response. This signal indicates the status
|
|
// of the write transaction.
|
|
output wire [1 : 0] S_AXI_BRESP,
|
|
// Write response valid. This signal indicates that the channel
|
|
// is signaling a valid write response.
|
|
output wire S_AXI_BVALID,
|
|
// Response ready. This signal indicates that the master
|
|
// can accept a write response.
|
|
input wire S_AXI_BREADY,
|
|
// Read address (issued by master, acceped by Slave)
|
|
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
|
|
// Protection type. This signal indicates the privilege
|
|
// and security level of the transaction, and whether the
|
|
// transaction is a data access or an instruction access.
|
|
input wire [2 : 0] S_AXI_ARPROT,
|
|
// Read address valid. This signal indicates that the channel
|
|
// is signaling valid read address and control information.
|
|
input wire S_AXI_ARVALID,
|
|
// Read address ready. This signal indicates that the slave is
|
|
// ready to accept an address and associated control signals.
|
|
output wire S_AXI_ARREADY,
|
|
// Read data (issued by slave)
|
|
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
|
|
// Read response. This signal indicates the status of the
|
|
// read transfer.
|
|
output wire [1 : 0] S_AXI_RRESP,
|
|
// Read valid. This signal indicates that the channel is
|
|
// signaling the required read data.
|
|
output wire S_AXI_RVALID,
|
|
// Read ready. This signal indicates that the master can
|
|
// accept the read data and response information.
|
|
input wire S_AXI_RREADY
|
|
);
|
|
|
|
// AXI4LITE signals
|
|
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
|
|
reg axi_awready;
|
|
reg axi_wready;
|
|
reg [1 : 0] axi_bresp;
|
|
reg axi_bvalid;
|
|
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
|
|
reg axi_arready;
|
|
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
|
|
reg [1 : 0] axi_rresp;
|
|
reg axi_rvalid;
|
|
|
|
// Example-specific design signals
|
|
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
|
// ADDR_LSB is used for addressing 32/64 bit registers/memories
|
|
// ADDR_LSB = 2 for 32 bits (n downto 2)
|
|
// ADDR_LSB = 3 for 64 bits (n downto 3)
|
|
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
|
|
localparam integer OPT_MEM_ADDR_BITS = 1;
|
|
//----------------------------------------------
|
|
//-- Signals for user logic register space example
|
|
//------------------------------------------------
|
|
//-- Number of Slave Registers 4
|
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
|
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
|
|
wire slv_reg_rden;
|
|
wire slv_reg_wren;
|
|
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
|
|
integer byte_index;
|
|
reg aw_en;
|
|
|
|
// I/O Connections assignments
|
|
assign slave_reg0 = slv_reg0;
|
|
assign slave_reg1 = slv_reg1;
|
|
assign slave_reg2 = slv_reg2;
|
|
// End custom assignments
|
|
assign S_AXI_AWREADY = axi_awready;
|
|
assign S_AXI_WREADY = axi_wready;
|
|
assign S_AXI_BRESP = axi_bresp;
|
|
assign S_AXI_BVALID = axi_bvalid;
|
|
assign S_AXI_ARREADY = axi_arready;
|
|
assign S_AXI_RDATA = axi_rdata;
|
|
assign S_AXI_RRESP = axi_rresp;
|
|
assign S_AXI_RVALID = axi_rvalid;
|
|
// Implement axi_awready generation
|
|
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
|
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
|
// de-asserted when reset is low.
|
|
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_awready <= 1'b0;
|
|
aw_en <= 1'b1;
|
|
end
|
|
else
|
|
begin
|
|
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
|
begin
|
|
// slave is ready to accept write address when
|
|
// there is a valid write address and write data
|
|
// on the write address and data bus. This design
|
|
// expects no outstanding transactions.
|
|
axi_awready <= 1'b1;
|
|
aw_en <= 1'b0;
|
|
end
|
|
else if (S_AXI_BREADY && axi_bvalid)
|
|
begin
|
|
aw_en <= 1'b1;
|
|
axi_awready <= 1'b0;
|
|
end
|
|
else
|
|
begin
|
|
axi_awready <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement axi_awaddr latching
|
|
// This process is used to latch the address when both
|
|
// S_AXI_AWVALID and S_AXI_WVALID are valid.
|
|
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_awaddr <= 0;
|
|
end
|
|
else
|
|
begin
|
|
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
|
begin
|
|
// Write Address latching
|
|
axi_awaddr <= S_AXI_AWADDR;
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement axi_wready generation
|
|
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
|
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
|
// de-asserted when reset is low.
|
|
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_wready <= 1'b0;
|
|
end
|
|
else
|
|
begin
|
|
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
|
|
begin
|
|
// slave is ready to accept write data when
|
|
// there is a valid write address and write data
|
|
// on the write address and data bus. This design
|
|
// expects no outstanding transactions.
|
|
axi_wready <= 1'b1;
|
|
end
|
|
else
|
|
begin
|
|
axi_wready <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement memory mapped register select and write logic generation
|
|
// The write data is accepted and written to memory mapped registers when
|
|
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
|
// select byte enables of slave registers while writing.
|
|
// These registers are cleared when reset (active low) is applied.
|
|
// Slave register write enable is asserted when valid address and data are available
|
|
// and the slave is ready to accept the write address and write data.
|
|
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
|
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
slv_reg0 <= 0;
|
|
slv_reg1 <= 0;
|
|
slv_reg2 <= 0;
|
|
slv_reg3 <= 0;
|
|
end
|
|
else begin
|
|
if (slv_reg_wren)
|
|
begin
|
|
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
|
2'h0:
|
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|
// Respective byte enables are asserted as per write strobes
|
|
// Slave register 0
|
|
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|
end
|
|
2'h1:
|
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|
// Respective byte enables are asserted as per write strobes
|
|
// Slave register 1
|
|
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|
end
|
|
2'h2:
|
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|
// Respective byte enables are asserted as per write strobes
|
|
// Slave register 2
|
|
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|
end
|
|
2'h3:
|
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
|
// Respective byte enables are asserted as per write strobes
|
|
// Slave register 3
|
|
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
|
end
|
|
default : begin
|
|
slv_reg0 <= slv_reg0;
|
|
slv_reg1 <= slv_reg1;
|
|
slv_reg2 <= slv_reg2;
|
|
slv_reg3 <= slv_reg3;
|
|
end
|
|
endcase
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement write response logic generation
|
|
// The write response and response valid signals are asserted by the slave
|
|
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
|
// This marks the acceptance of address and indicates the status of
|
|
// write transaction.
|
|
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_bvalid <= 0;
|
|
axi_bresp <= 2'b0;
|
|
end
|
|
else
|
|
begin
|
|
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
|
|
begin
|
|
// indicates a valid write response is available
|
|
axi_bvalid <= 1'b1;
|
|
axi_bresp <= 2'b0; // 'OKAY' response
|
|
end // work error responses in future
|
|
else
|
|
begin
|
|
if (S_AXI_BREADY && axi_bvalid)
|
|
//check if bready is asserted while bvalid is high)
|
|
//(there is a possibility that bready is always asserted high)
|
|
begin
|
|
axi_bvalid <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement axi_arready generation
|
|
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
|
// S_AXI_ARVALID is asserted. axi_awready is
|
|
// de-asserted when reset (active low) is asserted.
|
|
// The read address is also latched when S_AXI_ARVALID is
|
|
// asserted. axi_araddr is reset to zero on reset assertion.
|
|
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_arready <= 1'b0;
|
|
axi_araddr <= 32'b0;
|
|
end
|
|
else
|
|
begin
|
|
if (~axi_arready && S_AXI_ARVALID)
|
|
begin
|
|
// indicates that the slave has acceped the valid read address
|
|
axi_arready <= 1'b1;
|
|
// Read address latching
|
|
axi_araddr <= S_AXI_ARADDR;
|
|
end
|
|
else
|
|
begin
|
|
axi_arready <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement axi_arvalid generation
|
|
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
|
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
|
// data are available on the axi_rdata bus at this instance. The
|
|
// assertion of axi_rvalid marks the validity of read data on the
|
|
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
|
// is deasserted on reset (active low). axi_rresp and axi_rdata are
|
|
// cleared to zero on reset (active low).
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_rvalid <= 0;
|
|
axi_rresp <= 0;
|
|
end
|
|
else
|
|
begin
|
|
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
|
|
begin
|
|
// Valid read data is available at the read data bus
|
|
axi_rvalid <= 1'b1;
|
|
axi_rresp <= 2'b0; // 'OKAY' response
|
|
end
|
|
else if (axi_rvalid && S_AXI_RREADY)
|
|
begin
|
|
// Read data is accepted by the master
|
|
axi_rvalid <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
// Implement memory mapped register select and read logic generation
|
|
// Slave register read enable is asserted when valid address is available
|
|
// and the slave is ready to accept the read address.
|
|
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
|
always @(*)
|
|
begin
|
|
// Address decoding for reading registers
|
|
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
|
2'h0 : reg_data_out <= slv_reg0;
|
|
2'h1 : reg_data_out <= slv_reg1;
|
|
2'h2 : reg_data_out <= slv_reg2;
|
|
2'h3 : reg_data_out <= slv_reg3;
|
|
default : reg_data_out <= 0;
|
|
endcase
|
|
end
|
|
|
|
// Output register or memory read data
|
|
always @( posedge S_AXI_ACLK )
|
|
begin
|
|
if ( S_AXI_ARESETN == 1'b0 )
|
|
begin
|
|
axi_rdata <= 0;
|
|
end
|
|
else
|
|
begin
|
|
// When there is a valid read address (S_AXI_ARVALID) with
|
|
// acceptance of read address by the slave (axi_arready),
|
|
// output the read dada
|
|
if (slv_reg_rden)
|
|
begin
|
|
axi_rdata <= reg_data_out; // register read data
|
|
end
|
|
end
|
|
end
|
|
|
|
// Add user logic here
|
|
|
|
// User logic ends
|
|
|
|
endmodule
|