Added AXI interface
This commit is contained in:
@ -3,17 +3,20 @@
|
||||
#######################################################################
|
||||
|
||||
|
||||
set_property PACKAGE_PIN L15 [get_ports {PL_VGA_R[0]}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_R[0]}]
|
||||
set_property PACKAGE_PIN L15 [get_ports {PL_VGA_R}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_R}]
|
||||
|
||||
set_property PACKAGE_PIN M15 [get_ports {PL_VGA_G[0]}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_G[0]}]
|
||||
set_property PACKAGE_PIN M15 [get_ports {PL_VGA_G}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_G}]
|
||||
|
||||
set_property PACKAGE_PIN L14 [get_ports {PL_VGA_B[0]}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_B[0]}]
|
||||
set_property PACKAGE_PIN L14 [get_ports {PL_VGA_B}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_B}]
|
||||
|
||||
set_property PACKAGE_PIN K13 [get_ports {PL_VGA_HSYNC[0]}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_HSYNC[0]}]
|
||||
set_property PACKAGE_PIN K13 [get_ports {PL_VGA_HS}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_HS}]
|
||||
|
||||
set_property PACKAGE_PIN L13 [get_ports {PL_VGA_VSYNC[0]}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_VSYNC[0]}]
|
||||
set_property PACKAGE_PIN L13 [get_ports {PL_VGA_VS}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_VS}]
|
||||
|
||||
set_property PACKAGE_PIN N13 [get_ports {PL_VGA_ACTIVE}]
|
||||
set_property IOSTANDARD LVCMOS33 [get_ports {PL_VGA_ACTIVE}]
|
111
simplevga_v1_0.v
Normal file
111
simplevga_v1_0.v
Normal file
@ -0,0 +1,111 @@
|
||||
|
||||
`timescale 1 ns / 1 ps
|
||||
|
||||
module simplevga_v1_0 #
|
||||
(
|
||||
// Users to add parameters here
|
||||
|
||||
// User parameters ends
|
||||
// Do not modify the parameters beyond this line
|
||||
|
||||
|
||||
// Parameters of Axi Slave Bus Interface S00_AXI
|
||||
parameter integer C_S00_AXI_DATA_WIDTH = 32,
|
||||
parameter integer C_S00_AXI_ADDR_WIDTH = 4
|
||||
)
|
||||
(
|
||||
// Users to add ports here
|
||||
input wire I_PIXEL_CLK,
|
||||
output wire O_VGA_ACTIVE, //High when drawing is active
|
||||
output wire O_VGA_HS, // horizontal sync output
|
||||
output wire O_VGA_VS, // vertical sync output
|
||||
output wire O_VGA_R, // 1-bit VGA red output
|
||||
output wire O_VGA_G, // 1-bit VGA green output
|
||||
output wire O_VGA_B, // 1-bit VGA blue output
|
||||
// User ports ends
|
||||
// Do not modify the ports beyond this line
|
||||
|
||||
|
||||
// Ports of Axi Slave Bus Interface S00_AXI
|
||||
input wire s00_axi_aclk,
|
||||
input wire s00_axi_aresetn,
|
||||
input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_awaddr,
|
||||
input wire [2 : 0] s00_axi_awprot,
|
||||
input wire s00_axi_awvalid,
|
||||
output wire s00_axi_awready,
|
||||
input wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_wdata,
|
||||
input wire [(C_S00_AXI_DATA_WIDTH/8)-1 : 0] s00_axi_wstrb,
|
||||
input wire s00_axi_wvalid,
|
||||
output wire s00_axi_wready,
|
||||
output wire [1 : 0] s00_axi_bresp,
|
||||
output wire s00_axi_bvalid,
|
||||
input wire s00_axi_bready,
|
||||
input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_araddr,
|
||||
input wire [2 : 0] s00_axi_arprot,
|
||||
input wire s00_axi_arvalid,
|
||||
output wire s00_axi_arready,
|
||||
output wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_rdata,
|
||||
output wire [1 : 0] s00_axi_rresp,
|
||||
output wire s00_axi_rvalid,
|
||||
input wire s00_axi_rready
|
||||
);
|
||||
wire [C_S00_AXI_DATA_WIDTH-1:0] reg_x;
|
||||
wire [C_S00_AXI_DATA_WIDTH-1:0] reg_y;
|
||||
wire [C_S00_AXI_DATA_WIDTH-1:0] reg_color;
|
||||
// Instantiation of Axi Bus Interface S00_AXI
|
||||
simplevga_v1_0_S00_AXI # (
|
||||
.C_S_AXI_DATA_WIDTH(C_S00_AXI_DATA_WIDTH),
|
||||
.C_S_AXI_ADDR_WIDTH(C_S00_AXI_ADDR_WIDTH)
|
||||
) simplevga_v1_0_S00_AXI_inst (
|
||||
.slave_reg0(reg_x),
|
||||
.slave_reg1(reg_y),
|
||||
.slave_reg2(reg_color),
|
||||
.S_AXI_ACLK(s00_axi_aclk),
|
||||
.S_AXI_ARESETN(s00_axi_aresetn),
|
||||
.S_AXI_AWADDR(s00_axi_awaddr),
|
||||
.S_AXI_AWPROT(s00_axi_awprot),
|
||||
.S_AXI_AWVALID(s00_axi_awvalid),
|
||||
.S_AXI_AWREADY(s00_axi_awready),
|
||||
.S_AXI_WDATA(s00_axi_wdata),
|
||||
.S_AXI_WSTRB(s00_axi_wstrb),
|
||||
.S_AXI_WVALID(s00_axi_wvalid),
|
||||
.S_AXI_WREADY(s00_axi_wready),
|
||||
.S_AXI_BRESP(s00_axi_bresp),
|
||||
.S_AXI_BVALID(s00_axi_bvalid),
|
||||
.S_AXI_BREADY(s00_axi_bready),
|
||||
.S_AXI_ARADDR(s00_axi_araddr),
|
||||
.S_AXI_ARPROT(s00_axi_arprot),
|
||||
.S_AXI_ARVALID(s00_axi_arvalid),
|
||||
.S_AXI_ARREADY(s00_axi_arready),
|
||||
.S_AXI_RDATA(s00_axi_rdata),
|
||||
.S_AXI_RRESP(s00_axi_rresp),
|
||||
.S_AXI_RVALID(s00_axi_rvalid),
|
||||
.S_AXI_RREADY(s00_axi_rready)
|
||||
);
|
||||
|
||||
// Add user logic here
|
||||
wire [9:0] box_x1 = reg_x[9:0];
|
||||
wire [9:0] box_x2 = reg_x[25:16];
|
||||
wire [8:0] box_y1 = reg_y[8:0];
|
||||
wire [8:0] box_y2 = reg_y[24:16];
|
||||
wire [5:0] box_color = reg_color[5:0];
|
||||
|
||||
vgasquare display (
|
||||
.CLK(s00_axi_aclk), // board clock
|
||||
.PIXEL_CLK(I_PIXEL_CLK), // Pixel clock: 25Mhz (or 25.125MHz) for VGA
|
||||
.RST_BTN(s00_axi_aresetn), // reset button
|
||||
.box_x1(box_x1),
|
||||
.box_x2(box_x2),
|
||||
.box_y1(box_y1),
|
||||
.box_y2(box_y2),
|
||||
.box_color(box_color), //1 bit for each color Foreground and background
|
||||
.VGA_ACTIVE(O_VGA_ACTIVE),
|
||||
.VGA_HS(O_VGA_HS), // horizontal sync output
|
||||
.VGA_VS(O_VGA_VS), // vertical sync output
|
||||
.VGA_R(O_VGA_R), // 1-bit VGA red output
|
||||
.VGA_G(O_VGA_G), // 1-bit VGA green output
|
||||
.VGA_B(O_VGA_B) // 1-bit VGA blue output
|
||||
);
|
||||
// User logic ends
|
||||
|
||||
endmodule
|
409
simplevga_v1_0_S00_AXI.v
Normal file
409
simplevga_v1_0_S00_AXI.v
Normal file
@ -0,0 +1,409 @@
|
||||
|
||||
`timescale 1 ns / 1 ps
|
||||
|
||||
module simplevga_v1_0_S00_AXI #
|
||||
(
|
||||
// Users to add parameters here
|
||||
|
||||
// User parameters ends
|
||||
// Do not modify the parameters beyond this line
|
||||
|
||||
// Width of S_AXI data bus
|
||||
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
||||
// Width of S_AXI address bus
|
||||
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
||||
)
|
||||
(
|
||||
// Users to add ports here
|
||||
output wire [C_S_AXI_DATA_WIDTH-1:0]slave_reg0,
|
||||
output wire [C_S_AXI_DATA_WIDTH-1:0]slave_reg1,
|
||||
output wire [C_S_AXI_DATA_WIDTH-1:0]slave_reg2,
|
||||
// User ports ends
|
||||
// Do not modify the ports beyond this line
|
||||
|
||||
// Global Clock Signal
|
||||
input wire S_AXI_ACLK,
|
||||
// Global Reset Signal. This Signal is Active LOW
|
||||
input wire S_AXI_ARESETN,
|
||||
// Write address (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
|
||||
// Write channel Protection type. This signal indicates the
|
||||
// privilege and security level of the transaction, and whether
|
||||
// the transaction is a data access or an instruction access.
|
||||
input wire [2 : 0] S_AXI_AWPROT,
|
||||
// Write address valid. This signal indicates that the master signaling
|
||||
// valid write address and control information.
|
||||
input wire S_AXI_AWVALID,
|
||||
// Write address ready. This signal indicates that the slave is ready
|
||||
// to accept an address and associated control signals.
|
||||
output wire S_AXI_AWREADY,
|
||||
// Write data (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
|
||||
// Write strobes. This signal indicates which byte lanes hold
|
||||
// valid data. There is one write strobe bit for each eight
|
||||
// bits of the write data bus.
|
||||
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
|
||||
// Write valid. This signal indicates that valid write
|
||||
// data and strobes are available.
|
||||
input wire S_AXI_WVALID,
|
||||
// Write ready. This signal indicates that the slave
|
||||
// can accept the write data.
|
||||
output wire S_AXI_WREADY,
|
||||
// Write response. This signal indicates the status
|
||||
// of the write transaction.
|
||||
output wire [1 : 0] S_AXI_BRESP,
|
||||
// Write response valid. This signal indicates that the channel
|
||||
// is signaling a valid write response.
|
||||
output wire S_AXI_BVALID,
|
||||
// Response ready. This signal indicates that the master
|
||||
// can accept a write response.
|
||||
input wire S_AXI_BREADY,
|
||||
// Read address (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
|
||||
// Protection type. This signal indicates the privilege
|
||||
// and security level of the transaction, and whether the
|
||||
// transaction is a data access or an instruction access.
|
||||
input wire [2 : 0] S_AXI_ARPROT,
|
||||
// Read address valid. This signal indicates that the channel
|
||||
// is signaling valid read address and control information.
|
||||
input wire S_AXI_ARVALID,
|
||||
// Read address ready. This signal indicates that the slave is
|
||||
// ready to accept an address and associated control signals.
|
||||
output wire S_AXI_ARREADY,
|
||||
// Read data (issued by slave)
|
||||
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
|
||||
// Read response. This signal indicates the status of the
|
||||
// read transfer.
|
||||
output wire [1 : 0] S_AXI_RRESP,
|
||||
// Read valid. This signal indicates that the channel is
|
||||
// signaling the required read data.
|
||||
output wire S_AXI_RVALID,
|
||||
// Read ready. This signal indicates that the master can
|
||||
// accept the read data and response information.
|
||||
input wire S_AXI_RREADY
|
||||
);
|
||||
|
||||
// AXI4LITE signals
|
||||
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
|
||||
reg axi_awready;
|
||||
reg axi_wready;
|
||||
reg [1 : 0] axi_bresp;
|
||||
reg axi_bvalid;
|
||||
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
|
||||
reg axi_arready;
|
||||
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
|
||||
reg [1 : 0] axi_rresp;
|
||||
reg axi_rvalid;
|
||||
|
||||
// Example-specific design signals
|
||||
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
||||
// ADDR_LSB is used for addressing 32/64 bit registers/memories
|
||||
// ADDR_LSB = 2 for 32 bits (n downto 2)
|
||||
// ADDR_LSB = 3 for 64 bits (n downto 3)
|
||||
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
|
||||
localparam integer OPT_MEM_ADDR_BITS = 1;
|
||||
//----------------------------------------------
|
||||
//-- Signals for user logic register space example
|
||||
//------------------------------------------------
|
||||
//-- Number of Slave Registers 4
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
|
||||
wire slv_reg_rden;
|
||||
wire slv_reg_wren;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
|
||||
integer byte_index;
|
||||
reg aw_en;
|
||||
|
||||
// I/O Connections assignments
|
||||
assign slave_reg0 = slv_reg0;
|
||||
assign slave_reg1 = slv_reg1;
|
||||
assign slave_reg2 = slv_reg2;
|
||||
// End custom assignments
|
||||
assign S_AXI_AWREADY = axi_awready;
|
||||
assign S_AXI_WREADY = axi_wready;
|
||||
assign S_AXI_BRESP = axi_bresp;
|
||||
assign S_AXI_BVALID = axi_bvalid;
|
||||
assign S_AXI_ARREADY = axi_arready;
|
||||
assign S_AXI_RDATA = axi_rdata;
|
||||
assign S_AXI_RRESP = axi_rresp;
|
||||
assign S_AXI_RVALID = axi_rvalid;
|
||||
// Implement axi_awready generation
|
||||
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
||||
// de-asserted when reset is low.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_awready <= 1'b0;
|
||||
aw_en <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||||
begin
|
||||
// slave is ready to accept write address when
|
||||
// there is a valid write address and write data
|
||||
// on the write address and data bus. This design
|
||||
// expects no outstanding transactions.
|
||||
axi_awready <= 1'b1;
|
||||
aw_en <= 1'b0;
|
||||
end
|
||||
else if (S_AXI_BREADY && axi_bvalid)
|
||||
begin
|
||||
aw_en <= 1'b1;
|
||||
axi_awready <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_awready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_awaddr latching
|
||||
// This process is used to latch the address when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are valid.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_awaddr <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||||
begin
|
||||
// Write Address latching
|
||||
axi_awaddr <= S_AXI_AWADDR;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_wready generation
|
||||
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
||||
// de-asserted when reset is low.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_wready <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
|
||||
begin
|
||||
// slave is ready to accept write data when
|
||||
// there is a valid write address and write data
|
||||
// on the write address and data bus. This design
|
||||
// expects no outstanding transactions.
|
||||
axi_wready <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_wready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement memory mapped register select and write logic generation
|
||||
// The write data is accepted and written to memory mapped registers when
|
||||
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
||||
// select byte enables of slave registers while writing.
|
||||
// These registers are cleared when reset (active low) is applied.
|
||||
// Slave register write enable is asserted when valid address and data are available
|
||||
// and the slave is ready to accept the write address and write data.
|
||||
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
slv_reg0 <= 0;
|
||||
slv_reg1 <= 0;
|
||||
slv_reg2 <= 0;
|
||||
slv_reg3 <= 0;
|
||||
end
|
||||
else begin
|
||||
if (slv_reg_wren)
|
||||
begin
|
||||
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||||
2'h0:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 0
|
||||
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h1:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 1
|
||||
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h2:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 2
|
||||
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h3:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 3
|
||||
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
default : begin
|
||||
slv_reg0 <= slv_reg0;
|
||||
slv_reg1 <= slv_reg1;
|
||||
slv_reg2 <= slv_reg2;
|
||||
slv_reg3 <= slv_reg3;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement write response logic generation
|
||||
// The write response and response valid signals are asserted by the slave
|
||||
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
||||
// This marks the acceptance of address and indicates the status of
|
||||
// write transaction.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_bvalid <= 0;
|
||||
axi_bresp <= 2'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
|
||||
begin
|
||||
// indicates a valid write response is available
|
||||
axi_bvalid <= 1'b1;
|
||||
axi_bresp <= 2'b0; // 'OKAY' response
|
||||
end // work error responses in future
|
||||
else
|
||||
begin
|
||||
if (S_AXI_BREADY && axi_bvalid)
|
||||
//check if bready is asserted while bvalid is high)
|
||||
//(there is a possibility that bready is always asserted high)
|
||||
begin
|
||||
axi_bvalid <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_arready generation
|
||||
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
||||
// S_AXI_ARVALID is asserted. axi_awready is
|
||||
// de-asserted when reset (active low) is asserted.
|
||||
// The read address is also latched when S_AXI_ARVALID is
|
||||
// asserted. axi_araddr is reset to zero on reset assertion.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_arready <= 1'b0;
|
||||
axi_araddr <= 32'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_arready && S_AXI_ARVALID)
|
||||
begin
|
||||
// indicates that the slave has acceped the valid read address
|
||||
axi_arready <= 1'b1;
|
||||
// Read address latching
|
||||
axi_araddr <= S_AXI_ARADDR;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_arready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_arvalid generation
|
||||
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
||||
// data are available on the axi_rdata bus at this instance. The
|
||||
// assertion of axi_rvalid marks the validity of read data on the
|
||||
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
||||
// is deasserted on reset (active low). axi_rresp and axi_rdata are
|
||||
// cleared to zero on reset (active low).
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_rvalid <= 0;
|
||||
axi_rresp <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
|
||||
begin
|
||||
// Valid read data is available at the read data bus
|
||||
axi_rvalid <= 1'b1;
|
||||
axi_rresp <= 2'b0; // 'OKAY' response
|
||||
end
|
||||
else if (axi_rvalid && S_AXI_RREADY)
|
||||
begin
|
||||
// Read data is accepted by the master
|
||||
axi_rvalid <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement memory mapped register select and read logic generation
|
||||
// Slave register read enable is asserted when valid address is available
|
||||
// and the slave is ready to accept the read address.
|
||||
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
||||
always @(*)
|
||||
begin
|
||||
// Address decoding for reading registers
|
||||
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||||
2'h0 : reg_data_out <= slv_reg0;
|
||||
2'h1 : reg_data_out <= slv_reg1;
|
||||
2'h2 : reg_data_out <= slv_reg2;
|
||||
2'h3 : reg_data_out <= slv_reg3;
|
||||
default : reg_data_out <= 0;
|
||||
endcase
|
||||
end
|
||||
|
||||
// Output register or memory read data
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_rdata <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
// When there is a valid read address (S_AXI_ARVALID) with
|
||||
// acceptance of read address by the slave (axi_arready),
|
||||
// output the read dada
|
||||
if (slv_reg_rden)
|
||||
begin
|
||||
axi_rdata <= reg_data_out; // register read data
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Add user logic here
|
||||
|
||||
// User logic ends
|
||||
|
||||
endmodule
|
11
userland.c
Normal file
11
userland.c
Normal file
@ -0,0 +1,11 @@
|
||||
SIMPLEVGA_mWriteReg(XPAR_SIMPLEVGA_0_S00_AXI_BASEADDR, SIMPLEVGA_S00_AXI_SLV_REG0_OFFSET, 0xFFFFFFFF);
|
||||
SIMPLEVGA_mWriteReg(XPAR_SIMPLEVGA_0_S00_AXI_BASEADDR, SIMPLEVGA_S00_AXI_SLV_REG1_OFFSET, 0xFFFFFFFF);
|
||||
SIMPLEVGA_mWriteReg(XPAR_SIMPLEVGA_0_S00_AXI_BASEADDR, SIMPLEVGA_S00_AXI_SLV_REG2_OFFSET, 0xFFFFFFFF);
|
||||
unsigned long x = 1;
|
||||
while(1) {
|
||||
for(x = 1; x < 100; x++) {
|
||||
unsigned long xreg = ((640-x) << 16) + x;
|
||||
SIMPLEVGA_mWriteReg(XPAR_SIMPLEVGA_0_S00_AXI_BASEADDR, SIMPLEVGA_S00_AXI_SLV_REG0_OFFSET, x);
|
||||
//usleep(1000000);
|
||||
}
|
||||
}
|
22
vga640x480.v
22
vga640x480.v
@ -54,25 +54,23 @@ module vga640x480(
|
||||
// animate: high for one tick at the end of the final active pixel line
|
||||
assign o_animate = ((v_count == VA_END - 1) & (h_count == LINE));
|
||||
|
||||
always @ (posedge i_clk)
|
||||
always @ (posedge i_pix_stb)
|
||||
begin
|
||||
if (i_rst) // reset to start of frame
|
||||
begin
|
||||
h_count <= 0;
|
||||
v_count <= 0;
|
||||
end
|
||||
if (i_pix_stb) // once per pixel
|
||||
begin
|
||||
if (h_count == LINE) // end of line
|
||||
begin
|
||||
h_count <= 0;
|
||||
v_count <= v_count + 1;
|
||||
end
|
||||
else
|
||||
h_count <= h_count + 1;
|
||||
|
||||
if (v_count == SCREEN) // end of screen
|
||||
v_count <= 0;
|
||||
if (h_count == LINE) // end of line
|
||||
begin
|
||||
h_count <= 0;
|
||||
v_count <= v_count + 1;
|
||||
end
|
||||
else
|
||||
h_count <= h_count + 1;
|
||||
|
||||
if (v_count == SCREEN) // end of screen
|
||||
v_count <= 0;
|
||||
end
|
||||
endmodule
|
@ -14,6 +14,7 @@ module vgasquare(
|
||||
input wire [8:0] box_y1,
|
||||
input wire [8:0] box_y2,
|
||||
input wire [5:0] box_color, //1 bit for each color Foreground and background
|
||||
output wire VGA_ACTIVE, //High when drawing is active
|
||||
output wire VGA_HS, // horizontal sync output
|
||||
output wire VGA_VS, // vertical sync output
|
||||
output wire VGA_R, // 1-bit VGA red output
|
||||
@ -30,6 +31,7 @@ module vgasquare(
|
||||
.i_clk(CLK),
|
||||
.i_pix_stb(PIXEL_CLK),
|
||||
.i_rst(rst),
|
||||
.o_active(VGA_ACTIVE),
|
||||
.o_hs(VGA_HS),
|
||||
.o_vs(VGA_VS),
|
||||
.o_x(x),
|
||||
@ -37,8 +39,7 @@ module vgasquare(
|
||||
);
|
||||
|
||||
// Draw one square
|
||||
wire square;
|
||||
assign square = ((x > box_x1) & (y > box_y1) & (x < box_x2) & (y < box_y2)) ? 1 : 0; //Is box within range?
|
||||
wire square = ((x > box_x1) & (y > box_y1) & (x < box_x2) & (y < box_y2)) ? 1 : 0; //Is box within range?
|
||||
|
||||
|
||||
assign VGA_R = square ? box_color[0] : box_color[3]; // Set R (Foreground and then background)
|
||||
|
Reference in New Issue
Block a user