trueskill/Skills/Elo/TwoPlayerEloCalculator.cs

80 lines
3.4 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
namespace Moserware.Skills.Elo
{
public abstract class TwoPlayerEloCalculator : SkillCalculator
{
protected readonly KFactor _KFactor;
protected TwoPlayerEloCalculator(KFactor kFactor)
: base(SupportedOptions.None, TeamsRange.Exactly(2), PlayersRange.Exactly(1))
{
_KFactor = kFactor;
}
public override IDictionary<TPlayer, Rating> CalculateNewRatings<TPlayer>(GameInfo gameInfo, IEnumerable<IDictionary<TPlayer, Rating>> teams, params int[] teamRanks)
{
ValidateTeamCountAndPlayersCountPerTeam(teams);
RankSorter.Sort(ref teams, ref teamRanks);
var result = new Dictionary<TPlayer, Rating>();
bool isDraw = (teamRanks[0] == teamRanks[1]);
var player1 = teams.First().First();
var player2 = teams.Last().First();
var player1Rating = player1.Value.Mean;
var player2Rating = player2.Value.Mean;
result[player1.Key] = CalculateNewRating(gameInfo, player1Rating, player2Rating, isDraw ? PairwiseComparison.Draw : PairwiseComparison.Win);
result[player2.Key] = CalculateNewRating(gameInfo, player2Rating, player1Rating, isDraw ? PairwiseComparison.Draw : PairwiseComparison.Lose);
return result;
}
protected virtual EloRating CalculateNewRating(GameInfo gameInfo, double selfRating, double opponentRating, PairwiseComparison selfToOpponentComparison)
{
double expectedProbability = GetPlayerWinProbability(gameInfo, selfRating, opponentRating);
double actualProbability = GetScoreFromComparison(selfToOpponentComparison);
double k = _KFactor.GetValueForRating(selfRating);
double ratingChange = k * (actualProbability - expectedProbability);
double newRating = selfRating + ratingChange;
return new EloRating(newRating);
}
private static double GetScoreFromComparison(PairwiseComparison comparison)
{
switch (comparison)
{
case PairwiseComparison.Win:
return 1;
case PairwiseComparison.Draw:
return 0.5;
case PairwiseComparison.Lose:
return 0;
default:
throw new NotSupportedException();
}
}
protected abstract double GetPlayerWinProbability(GameInfo gameInfo, double playerRating, double opponentRating);
public override double CalculateMatchQuality<TPlayer>(GameInfo gameInfo, IEnumerable<IDictionary<TPlayer, Rating>> teams)
{
ValidateTeamCountAndPlayersCountPerTeam(teams);
double player1Rating = teams.First().First().Value.Mean;
double player2Rating = teams.Last().First().Value.Mean;
double ratingDifference = player1Rating - player2Rating;
// The TrueSkill paper mentions that they used s1 - s2 (rating difference) to
// determine match quality. I convert that to a percentage as a delta from 50%
// using the cumulative density function of the specific curve being used
double deltaFrom50Percent = Math.Abs(GetPlayerWinProbability(gameInfo, player1Rating, player2Rating) - 0.5);
return (0.5 - deltaFrom50Percent) / 0.5;
}
}
}