trueskill/Skills/TrueSkill/Factors/GaussianWithinFactor.cs

73 lines
3.0 KiB
C#

using System;
using Moserware.Numerics;
using Moserware.Skills.FactorGraphs;
namespace Moserware.Skills.TrueSkill.Factors
{
/// <summary>
/// Factor representing a team difference that has not exceeded the draw margin.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
public class GaussianWithinFactor : GaussianFactor
{
private readonly double _Epsilon;
public GaussianWithinFactor(double epsilon, Variable<GaussianDistribution> variable)
: base(String.Format("{0} <= {1:0.000}", variable, epsilon))
{
_Epsilon = epsilon;
CreateVariableToMessageBinding(variable);
}
public override double LogNormalization
{
get
{
GaussianDistribution marginal = Variables[0].Value;
GaussianDistribution message = Messages[0].Value;
GaussianDistribution messageFromVariable = marginal/message;
double mean = messageFromVariable.Mean;
double std = messageFromVariable.StandardDeviation;
double z = GaussianDistribution.CumulativeTo((_Epsilon - mean)/std)
-
GaussianDistribution.CumulativeTo((-_Epsilon - mean)/std);
return -GaussianDistribution.LogProductNormalization(messageFromVariable, message) + Math.Log(z);
}
}
protected override double UpdateMessage(Message<GaussianDistribution> message,
Variable<GaussianDistribution> variable)
{
GaussianDistribution oldMarginal = variable.Value.Clone();
GaussianDistribution oldMessage = message.Value.Clone();
GaussianDistribution messageFromVariable = oldMarginal/oldMessage;
double c = messageFromVariable.Precision;
double d = messageFromVariable.PrecisionMean;
double sqrtC = Math.Sqrt(c);
double dOnSqrtC = d/sqrtC;
double epsilonTimesSqrtC = _Epsilon*sqrtC;
d = messageFromVariable.PrecisionMean;
double denominator = 1.0 - TruncatedGaussianCorrectionFunctions.WWithinMargin(dOnSqrtC, epsilonTimesSqrtC);
double newPrecision = c/denominator;
double newPrecisionMean = (d +
sqrtC*
TruncatedGaussianCorrectionFunctions.VWithinMargin(dOnSqrtC, epsilonTimesSqrtC))/
denominator;
GaussianDistribution newMarginal = GaussianDistribution.FromPrecisionMean(newPrecisionMean, newPrecision);
GaussianDistribution newMessage = oldMessage*newMarginal/oldMarginal;
/// Update the message and marginal
message.Value = newMessage;
variable.Value = newMarginal;
/// Return the difference in the new marginal
return newMarginal - oldMarginal;
}
}
}