mirror of
				https://github.com/furyfire/trueskill.git
				synced 2025-11-04 10:12:28 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			115 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
<?php
 | 
						|
 | 
						|
declare(strict_types=1);
 | 
						|
 | 
						|
namespace DNW\Skills\Tests\Numerics;
 | 
						|
 | 
						|
use DNW\Skills\Numerics\BasicMath;
 | 
						|
use DNW\Skills\Numerics\GaussianDistribution;
 | 
						|
use PHPUnit\Framework\TestCase;
 | 
						|
 | 
						|
class GaussianDistributionTest extends TestCase
 | 
						|
{
 | 
						|
    private const ERROR_TOLERANCE = 0.000001;
 | 
						|
 | 
						|
    public function testGetters(): void
 | 
						|
    {
 | 
						|
        $gd = new GaussianDistribution(10, 3);
 | 
						|
 | 
						|
        $this->assertEquals(10, $gd->getMean());
 | 
						|
        $this->assertEquals(9, $gd->getVariance());
 | 
						|
        $this->assertEquals(3, $gd->getStandardDeviation());
 | 
						|
        $this->assertEquals(1 / 9, $gd->getPrecision());
 | 
						|
        $this->assertEquals(1 / 9 * 10, $gd->getPrecisionMean());
 | 
						|
        $this->assertEqualsWithDelta(0.13298076013, $gd->getNormalizationConstant(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testCumulativeTo(): void
 | 
						|
    {
 | 
						|
        // Verified with WolframAlpha
 | 
						|
        // (e.g. http://www.wolframalpha.com/input/?i=CDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
 | 
						|
        $this->assertEqualsWithDelta(0.691462, GaussianDistribution::cumulativeTo(0.5), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testAt(): void
 | 
						|
    {
 | 
						|
        // Verified with WolframAlpha
 | 
						|
        // (e.g. http://www.wolframalpha.com/input/?i=PDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
 | 
						|
        $this->assertEqualsWithDelta(0.352065, GaussianDistribution::at(0.5), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testMultiplication(): void
 | 
						|
    {
 | 
						|
        // I verified this against the formula at http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
 | 
						|
        $standardNormal  = new GaussianDistribution(0, 1);
 | 
						|
        $shiftedGaussian = new GaussianDistribution(2, 3);
 | 
						|
        $product         = GaussianDistribution::multiply($standardNormal, $shiftedGaussian);
 | 
						|
 | 
						|
        $this->assertEqualsWithDelta(0.2, $product->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
        $this->assertEqualsWithDelta(3.0 / sqrt(10), $product->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
 | 
						|
        $m4s5 = new GaussianDistribution(4, 5);
 | 
						|
        $m6s7 = new GaussianDistribution(6, 7);
 | 
						|
 | 
						|
        $product2 = GaussianDistribution::multiply($m4s5, $m6s7);
 | 
						|
 | 
						|
        $expectedMean = (4 * BasicMath::square(7) + 6 * BasicMath::square(5)) / (BasicMath::square(5) + BasicMath::square(7));
 | 
						|
        $this->assertEqualsWithDelta($expectedMean, $product2->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
 | 
						|
        $expectedSigma = sqrt(((BasicMath::square(5) * BasicMath::square(7)) / (BasicMath::square(5) + BasicMath::square(7))));
 | 
						|
        $this->assertEqualsWithDelta($expectedSigma, $product2->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testDivision(): void
 | 
						|
    {
 | 
						|
        // Since the multiplication was worked out by hand, we use the same numbers but work backwards
 | 
						|
        $product        = new GaussianDistribution(0.2, 3.0 / sqrt(10));
 | 
						|
        $standardNormal = new GaussianDistribution(0, 1);
 | 
						|
 | 
						|
        $productDividedByStandardNormal = GaussianDistribution::divide($product, $standardNormal);
 | 
						|
        $this->assertEqualsWithDelta(2.0, $productDividedByStandardNormal->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
        $this->assertEqualsWithDelta(3.0, $productDividedByStandardNormal->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
 | 
						|
        $product2              = new GaussianDistribution((4 * BasicMath::square(7) + 6 * BasicMath::square(5)) / (BasicMath::square(5) + BasicMath::square(7)), sqrt(((BasicMath::square(5) * BasicMath::square(7)) / (BasicMath::square(5) + BasicMath::square(7)))));
 | 
						|
        $m4s5                  = new GaussianDistribution(4, 5);
 | 
						|
        $product2DividedByM4S5 = GaussianDistribution::divide($product2, $m4s5);
 | 
						|
        $this->assertEqualsWithDelta(6.0, $product2DividedByM4S5->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
        $this->assertEqualsWithDelta(7.0, $product2DividedByM4S5->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testLogProductNormalization(): void
 | 
						|
    {
 | 
						|
        // Verified with Ralf Herbrich's F# implementation
 | 
						|
        $standardNormal = new GaussianDistribution(0, 1);
 | 
						|
        $lpn = GaussianDistribution::logProductNormalization($standardNormal, $standardNormal);
 | 
						|
        $this->assertEqualsWithDelta(-1.2655121234846454, $lpn, GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
 | 
						|
        $m1s2 = new GaussianDistribution(1, 2);
 | 
						|
        $m3s4 = new GaussianDistribution(3, 4);
 | 
						|
        $lpn2 = GaussianDistribution::logProductNormalization($m1s2, $m3s4);
 | 
						|
        $this->assertEqualsWithDelta(-2.5168046699816684, $lpn2, GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testLogRatioNormalization(): void
 | 
						|
    {
 | 
						|
        // Verified with Ralf Herbrich's F# implementation
 | 
						|
        $m1s2 = new GaussianDistribution(1, 2);
 | 
						|
        $m3s4 = new GaussianDistribution(3, 4);
 | 
						|
        $lrn  = GaussianDistribution::logRatioNormalization($m1s2, $m3s4);
 | 
						|
        $this->assertEqualsWithDelta(2.6157405972171204, $lrn, GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
 | 
						|
    public function testAbsoluteDifference(): void
 | 
						|
    {
 | 
						|
        // Verified with Ralf Herbrich's F# implementation
 | 
						|
        $standardNormal = new GaussianDistribution(0, 1);
 | 
						|
        $absDiff        = GaussianDistribution::absoluteDifference($standardNormal, $standardNormal);
 | 
						|
        $this->assertEqualsWithDelta(0.0, $absDiff, GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
 | 
						|
        $m1s2 = new GaussianDistribution(1, 2);
 | 
						|
        $m3s4 = new GaussianDistribution(3, 4);
 | 
						|
        $absDiff2 = GaussianDistribution::absoluteDifference($m1s2, $m3s4);
 | 
						|
        $this->assertEqualsWithDelta(0.4330127018922193, $absDiff2, GaussianDistributionTest::ERROR_TOLERANCE);
 | 
						|
    }
 | 
						|
}
 |