trueskill/PHPSkills/TrueSkill/Factors/GaussianWeightedSumFactor.php

273 lines
10 KiB
PHP

<?php
namespace Moserware\Skills\TrueSkill\Factors;
require_once(dirname(__FILE__) . "/GaussianFactor.php");
require_once(dirname(__FILE__) . "/../../Guard.php");
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
require_once(dirname(__FILE__) . "/../../Numerics/BasicMath.php");
use Moserware\Numerics\GaussianDistribution;
use Moserware\Skills\Guard;
use Moserware\Skills\FactorGraphs\Message;
use Moserware\Skills\FactorGraphs\Variable;
/// <summary>
/// Factor that sums together multiple Gaussians.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
class GaussianWeightedSumFactor extends GaussianFactor
{
private $_variableIndexOrdersForWeights = array();
// This following is used for convenience, for example, the first entry is [0, 1, 2]
// corresponding to v[0] = a1*v[1] + a2*v[2]
private $_weights;
private $_weightsSquared;
public function __construct(Variable &$sumVariable, array &$variablesToSum, array &$variableWeights = null)
{
parent::__construct(self::createName($sumVariable, $variablesToSum, $variableWeights));
$this->_weights = array();
$this->_weightsSquared = array();
// The first weights are a straightforward copy
// v_0 = a_1*v_1 + a_2*v_2 + ... + a_n * v_n
$this->_weights[0] = array();
$variableWeightsLength = count($variableWeights);
for($i = 0; $i < $variableWeightsLength; $i++)
{
$weight = &$variableWeights[$i];
$this->_weights[0][$i] = $weight;
$this->_weightsSquared[0][$i] = square($weight);
}
$variablesToSumLength = count($variablesToSum);
// 0..n-1
$this->_variableIndexOrdersForWeights[0] = array();
for($i = 0; $i < ($variablesToSumLength + 1); $i++)
{
$this->_variableIndexOrdersForWeights[0][] = $i;
}
// The rest move the variables around and divide out the constant.
// For example:
// v_1 = (-a_2 / a_1) * v_2 + (-a3/a1) * v_3 + ... + (1.0 / a_1) * v_0
// By convention, we'll put the v_0 term at the end
$weightsLength = $variableWeightsLength + 1;
for ($weightsIndex = 1; $weightsIndex < $weightsLength; $weightsIndex++)
{
$currentWeights = array();
$variableIndices = array();
$variableIndices[0] = $weightsIndex;
$currentWeightsSquared = array();
// keep a single variable to keep track of where we are in the array.
// This is helpful since we skip over one of the spots
$currentDestinationWeightIndex = 0;
$variableWeightsLength = count($variableWeights);
for ($currentWeightSourceIndex = 0;
$currentWeightSourceIndex < $variableWeightsLength;
$currentWeightSourceIndex++)
{
if ($currentWeightSourceIndex == ($weightsIndex - 1))
{
continue;
}
$currentWeight = (-$variableWeights[$currentWeightSourceIndex]/$variableWeights[$weightsIndex - 1]);
if ($variableWeights[$weightsIndex - 1] == 0)
{
// HACK: Getting around division by zero
$currentWeight = 0;
}
$currentWeights[$currentDestinationWeightIndex] = $currentWeight;
$currentWeightsSquared[$currentDestinationWeightIndex] = $currentWeight*$currentWeight;
$variableIndices[$currentDestinationWeightIndex + 1] = $currentWeightSourceIndex + 1;
$currentDestinationWeightIndex++;
}
// And the final one
$finalWeight = 1.0/$variableWeights[$weightsIndex - 1];
if ($variableWeights[$weightsIndex - 1] == 0)
{
// HACK: Getting around division by zero
$finalWeight = 0;
}
$currentWeights[$currentDestinationWeightIndex] = $finalWeight;
$currentWeightsSquared[$currentDestinationWeightIndex] = square($finalWeight);
$variableIndices[count($variableWeights)] = 0;
$this->_variableIndexOrdersForWeights[] = $variableIndices;
$this->_weights[$weightsIndex] = $currentWeights;
$this->_weightsSquared[$weightsIndex] = $currentWeightsSquared;
}
$this->createVariableToMessageBinding($sumVariable);
foreach ($variablesToSum as $currentVariable)
{
$this->createVariableToMessageBinding($currentVariable);
}
}
public function getLogNormalization()
{
$vars = &$this->getVariables();
$messages = &$this->getMessages();
$result = 0.0;
// We start at 1 since offset 0 has the sum
$varCount = count($vars);
for ($i = 1; $i < $varCount; $i++)
{
$result += GaussianDistribution::logRatioNormalization($vars[$i]->getValue(), $messages[$i]->getValue());
}
return $result;
}
private function updateHelper(array &$weights, array &$weightsSquared,
array &$messages,
array &$variables)
{
// Potentially look at http://mathworld.wolfram.com/NormalSumDistribution.html for clues as
// to what it's doing
$messages = &$this->getMessages();
$message0 = clone $messages[0]->getValue();
$marginal0 = clone $variables[0]->getValue();
// The math works out so that 1/newPrecision = sum of a_i^2 /marginalsWithoutMessages[i]
$inverseOfNewPrecisionSum = 0.0;
$anotherInverseOfNewPrecisionSum = 0.0;
$weightedMeanSum = 0.0;
$anotherWeightedMeanSum = 0.0;
$weightsSquaredLength = count($weightsSquared);
for ($i = 0; $i < $weightsSquaredLength; $i++)
{
// These flow directly from the paper
$inverseOfNewPrecisionSum += $weightsSquared[$i]/
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
$diff = GaussianDistribution::divide($variables[$i + 1]->getValue(), $messages[$i + 1]->getValue());
$anotherInverseOfNewPrecisionSum += $weightsSquared[$i]/$diff->getPrecision();
$weightedMeanSum += $weights[$i]
*
($variables[$i + 1]->getValue()->getPrecisionMean() - $messages[$i + 1]->getValue()->getPrecisionMean())
/
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
$anotherWeightedMeanSum += $weights[$i]*$diff->getPrecisionMean()/$diff->getPrecision();
}
$newPrecision = 1.0/$inverseOfNewPrecisionSum;
$anotherNewPrecision = 1.0/$anotherInverseOfNewPrecisionSum;
$newPrecisionMean = $newPrecision*$weightedMeanSum;
$anotherNewPrecisionMean = $anotherNewPrecision*$anotherWeightedMeanSum;
$newMessage = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
$oldMarginalWithoutMessage = GaussianDistribution::divide($marginal0, $message0);
$newMarginal = GaussianDistribution::multiply($oldMarginalWithoutMessage, $newMessage);
/// Update the message and marginal
$messages[0]->setValue($newMessage);
$variables[0]->setValue($newMarginal);
/// Return the difference in the new marginal
$finalDiff = GaussianDistribution::subtract($newMarginal, $marginal0);
return $finalDiff;
}
public function updateMessageIndex($messageIndex)
{
$allMessages = &$this->getMessages();
$allVariables = &$this->getVariables();
Guard::argumentIsValidIndex($messageIndex, count($allMessages), "messageIndex");
$updatedMessages = array();
$updatedVariables = array();
$indicesToUse = &$this->_variableIndexOrdersForWeights[$messageIndex];
// The tricky part here is that we have to put the messages and variables in the same
// order as the weights. Thankfully, the weights and messages share the same index numbers,
// so we just need to make sure they're consistent
$allMessagesCount = count($allMessages);
for ($i = 0; $i < $allMessagesCount; $i++)
{
$updatedMessages[] =$allMessages[$indicesToUse[$i]];
$updatedVariables[] = $allVariables[$indicesToUse[$i]];
}
return $this->updateHelper($this->_weights[$messageIndex],
$this->_weightsSquared[$messageIndex],
$updatedMessages,
$updatedVariables);
}
private static function createName($sumVariable, $variablesToSum, $weights)
{
// TODO: Perf? Use PHP equivalent of StringBuilder? implode on arrays?
$result = (string)$sumVariable;
$result .= ' = ';
$totalVars = count($variablesToSum);
for($i = 0; $i < $totalVars; $i++)
{
$isFirst = ($i == 0);
if($isFirst && ($weights[$i] < 0))
{
$result .= '-';
}
$absValue = sprintf("%.2f", \abs($weights[$i])); // 0.00?
$result .= $absValue;
$result .= "*[";
$result .= (string)$variablesToSum[$i];
$result .= ']';
$isLast = ($i == ($totalVars - 1));
if(!$isLast)
{
if($weights[$i + 1] >= 0)
{
$result .= ' + ';
}
else
{
$result .= ' - ';
}
}
}
return $result;
}
}
?>