trueskill/tests/Numerics/GaussianDistributionTest.php
Jens True 1e381bfab7
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
Quality of life
2024-07-31 07:27:13 +00:00

172 lines
8.4 KiB
PHP

<?php
declare(strict_types=1);
namespace DNW\Skills\Tests\Numerics;
use DNW\Skills\Numerics\BasicMath;
use DNW\Skills\Numerics\GaussianDistribution;
use PHPUnit\Framework\TestCase;
use PHPUnit\Framework\Attributes\CoversClass;
use PHPUnit\Framework\Attributes\UsesClass;
#[CoversClass(GaussianDistribution::class)]
#[UsesClass(BasicMath::class)]
class GaussianDistributionTest extends TestCase
{
private const ERROR_TOLERANCE = 0.000001;
public function testGetters(): void
{
$gd = new GaussianDistribution(10, 3);
$this->assertEquals(10, $gd->getMean());
$this->assertEquals(9, $gd->getVariance());
$this->assertEquals(3, $gd->getStandardDeviation());
$this->assertEquals(1 / 9, $gd->getPrecision());
$this->assertEquals(1 / 9 * 10, $gd->getPrecisionMean());
$this->assertEqualsWithDelta(0.13298076013, $gd->getNormalizationConstant(), GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testCumulativeTo(): void
{
// Verified with WolframAlpha
// (e.g. http://www.wolframalpha.com/input/?i=CDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
$this->assertEqualsWithDelta(0.691462, GaussianDistribution::cumulativeTo(0.5), GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testAt(): void
{
// Verified with WolframAlpha
// (e.g. http://www.wolframalpha.com/input/?i=PDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
$this->assertEqualsWithDelta(0.352065, GaussianDistribution::at(0.5), GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testMultiplication(): void
{
// I verified this against the formula at http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
$standardNormal = new GaussianDistribution(0, 1);
$shiftedGaussian = new GaussianDistribution(2, 3);
$product = GaussianDistribution::multiply($standardNormal, $shiftedGaussian);
$this->assertEqualsWithDelta(0.2, $product->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
$this->assertEqualsWithDelta(3.0 / sqrt(10), $product->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
$m4s5 = new GaussianDistribution(4, 5);
$m6s7 = new GaussianDistribution(6, 7);
$product2 = GaussianDistribution::multiply($m4s5, $m6s7);
$expectedMean = (4 * BasicMath::square(7) + 6 * BasicMath::square(5)) / (BasicMath::square(5) + BasicMath::square(7));
$this->assertEqualsWithDelta($expectedMean, $product2->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
$expectedSigma = sqrt(((BasicMath::square(5) * BasicMath::square(7)) / (BasicMath::square(5) + BasicMath::square(7))));
$this->assertEqualsWithDelta($expectedSigma, $product2->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testDivision(): void
{
// Since the multiplication was worked out by hand, we use the same numbers but work backwards
$product = new GaussianDistribution(0.2, 3.0 / sqrt(10));
$standardNormal = new GaussianDistribution(0, 1);
$productDividedByStandardNormal = GaussianDistribution::divide($product, $standardNormal);
$this->assertEqualsWithDelta(2.0, $productDividedByStandardNormal->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
$this->assertEqualsWithDelta(3.0, $productDividedByStandardNormal->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
$product2 = new GaussianDistribution((4 * BasicMath::square(7) + 6 * BasicMath::square(5)) / (BasicMath::square(5) + BasicMath::square(7)), sqrt(((BasicMath::square(5) * BasicMath::square(7)) / (BasicMath::square(5) + BasicMath::square(7)))));
$m4s5 = new GaussianDistribution(4, 5);
$product2DividedByM4S5 = GaussianDistribution::divide($product2, $m4s5);
$this->assertEqualsWithDelta(6.0, $product2DividedByM4S5->getMean(), GaussianDistributionTest::ERROR_TOLERANCE);
$this->assertEqualsWithDelta(7.0, $product2DividedByM4S5->getStandardDeviation(), GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testLogProductNormalization(): void
{
// Verified with Ralf Herbrich's F# implementation
$standardNormal = new GaussianDistribution(0, 1);
$lpn = GaussianDistribution::logProductNormalization($standardNormal, $standardNormal);
$this->assertEqualsWithDelta(-1.2655121234846454, $lpn, GaussianDistributionTest::ERROR_TOLERANCE);
$m1s2 = new GaussianDistribution(1, 2);
$m3s4 = new GaussianDistribution(3, 4);
$lpn2 = GaussianDistribution::logProductNormalization($m1s2, $m3s4);
$this->assertEqualsWithDelta(-2.5168046699816684, $lpn2, GaussianDistributionTest::ERROR_TOLERANCE);
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
$lrn = GaussianDistribution::logProductNormalization($numerator, $denominator);
$this->assertEquals(0, $lrn);
$numerator = GaussianDistribution::fromPrecisionMean(1, 1);
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
$lrn = GaussianDistribution::logProductNormalization($numerator, $denominator);
$this->assertEquals(0, $lrn);
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
$denominator = GaussianDistribution::fromPrecisionMean(1, 1);
$lrn = GaussianDistribution::logProductNormalization($numerator, $denominator);
$this->assertEquals(0, $lrn);
}
public function testLogRatioNormalization(): void
{
// Verified with Ralf Herbrich's F# implementation
$m1s2 = new GaussianDistribution(1, 2);
$m3s4 = new GaussianDistribution(3, 4);
$lrn = GaussianDistribution::logRatioNormalization($m1s2, $m3s4);
$this->assertEqualsWithDelta(2.6157405972171204, $lrn, GaussianDistributionTest::ERROR_TOLERANCE);
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
$lrn = GaussianDistribution::logRatioNormalization($numerator, $denominator);
$this->assertEquals(0, $lrn);
$numerator = GaussianDistribution::fromPrecisionMean(1, 1);
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
$lrn = GaussianDistribution::logRatioNormalization($numerator, $denominator);
$this->assertEquals(0, $lrn);
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
$denominator = GaussianDistribution::fromPrecisionMean(1, 1);
$lrn = GaussianDistribution::logRatioNormalization($numerator, $denominator);
$this->assertEquals(0, $lrn);
}
public function testAbsoluteDifference(): void
{
// Verified with Ralf Herbrich's F# implementation
$standardNormal = new GaussianDistribution(0, 1);
$absDiff = GaussianDistribution::absoluteDifference($standardNormal, $standardNormal);
$this->assertEqualsWithDelta(0.0, $absDiff, GaussianDistributionTest::ERROR_TOLERANCE);
$m1s2 = new GaussianDistribution(1, 2);
$m3s4 = new GaussianDistribution(3, 4);
$absDiff2 = GaussianDistribution::absoluteDifference($m1s2, $m3s4);
$this->assertEqualsWithDelta(0.4330127018922193, $absDiff2, GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testSubtract(): void
{
// Verified with Ralf Herbrich's F# implementation
$standardNormal = new GaussianDistribution(0, 1);
$absDiff = GaussianDistribution::subtract($standardNormal, $standardNormal);
$this->assertEqualsWithDelta(0.0, $absDiff, GaussianDistributionTest::ERROR_TOLERANCE);
$m1s2 = new GaussianDistribution(1, 2);
$m3s4 = new GaussianDistribution(3, 4);
$absDiff2 = GaussianDistribution::subtract($m1s2, $m3s4);
$this->assertEqualsWithDelta(0.4330127018922193, $absDiff2, GaussianDistributionTest::ERROR_TOLERANCE);
}
public function testfromPrecisionMean(): void
{
$gd = GaussianDistribution::fromPrecisionMean(0, 0);
$this->assertInfinite($gd->getVariance());
$this->assertInfinite($gd->getStandardDeviation());
$this->assertNan($gd->getMean());
$this->assertEquals(0, $gd->getPrecisionMean());
$this->assertEquals(0, $gd->getPrecision());
}
}