using System;
using Moserware.Numerics;
using Moserware.Skills.FactorGraphs;
namespace Moserware.Skills.TrueSkill.Factors
{
///
/// Connects two variables and adds uncertainty.
///
/// See the accompanying math paper for more details.
public class GaussianLikelihoodFactor : GaussianFactor
{
private readonly double _Precision;
public GaussianLikelihoodFactor(double betaSquared, Variable variable1,
Variable variable2)
: base(String.Format("Likelihood of {0} going to {1}", variable2, variable1))
{
_Precision = 1.0/betaSquared;
CreateVariableToMessageBinding(variable1);
CreateVariableToMessageBinding(variable2);
}
public override double LogNormalization
{
get { return GaussianDistribution.LogRatioNormalization(Variables[0].Value, Messages[0].Value); }
}
private double UpdateHelper(Message message1, Message message2,
Variable variable1, Variable variable2)
{
GaussianDistribution message1Value = message1.Value.Clone();
GaussianDistribution message2Value = message2.Value.Clone();
GaussianDistribution marginal1 = variable1.Value.Clone();
GaussianDistribution marginal2 = variable2.Value.Clone();
double a = _Precision/(_Precision + marginal2.Precision - message2Value.Precision);
GaussianDistribution newMessage = GaussianDistribution.FromPrecisionMean(
a*(marginal2.PrecisionMean - message2Value.PrecisionMean),
a*(marginal2.Precision - message2Value.Precision));
GaussianDistribution oldMarginalWithoutMessage = marginal1/message1Value;
GaussianDistribution newMarginal = oldMarginalWithoutMessage*newMessage;
/// Update the message and marginal
message1.Value = newMessage;
variable1.Value = newMarginal;
/// Return the difference in the new marginal
return newMarginal - marginal1;
}
public override double UpdateMessage(int messageIndex)
{
switch (messageIndex)
{
case 0:
return UpdateHelper(Messages[0], Messages[1],
Variables[0], Variables[1]);
case 1:
return UpdateHelper(Messages[1], Messages[0],
Variables[1], Variables[0]);
default:
throw new ArgumentOutOfRangeException();
}
}
}
}