_rowCount = $rows; $this->_columnCount = $columns; $this->_matrixRowData = $matrixData; } public function getRowCount() { return $this->_rowCount; } public function getColumnCount() { return $this->_columnCount; } public function getValue($row, $col) { return $this->_matrixRowData[$row][$col]; } public function setValue($row, $col, $value) { $this->_matrixRowData[$row][$col] = $value; } public function getTranspose() { // Just flip everything $transposeMatrix = array(); for ($currentRowTransposeMatrix = 0; $currentRowTransposeMatrix < $this->_columnCount; $currentRowTransposeMatrix++) { $transposeMatrixCurrentRowColumnValues = array(); $transposeMatrix[] = $transposeMatrixCurrentRowColumnValues; for ($currentColumnTransposeMatrix = 0; $currentColumnTransposeMatrix < $this->_rowCount; $currentColumnTransposeMatrix++) { $transposeMatrix[$currentRowTransposeMatrix][$currentColumnTransposeMatrix] = $this->_matrixRowData[$currentColumnTransposeMatrix][$currentRowTransposeMatrix]; } } return new Matrix($transposeMatrix); } private function isSquare() { return ($this->_rowCount == $this->_columnCount) && ($this->_rowCount > 0); } public function getDeterminant() { // Basic argument checking if (!$this->isSquare()) { throw new Exception("Matrix must be square!"); } if ($this->_rowCount == 1) { // Really happy path :) return $this->_matrixRowValues[0][0]; } if ($this->_rowCount == 2) { // Happy path! // Given: // | a b | // | c d | // The determinant is ad - bc $a = $this->_matrixRowData[0][0]; $b = $this->_matrixRowData[0][1]; $c = $this->_matrixRowData[1][0]; $d = $this->_matrixRowData[1][1]; return $a*$d - $b*$c; } // I use the Laplace expansion here since it's straightforward to implement. // It's O(n^2) and my implementation is especially poor performing, but the // core idea is there. Perhaps I should replace it with a better algorithm // later. // See http://en.wikipedia.org/wiki/Laplace_expansion for details $result = 0.0; // I expand along the first row for ($currentColumn = 0; $currentColumn < $this->_columnCount; $currentColumn++) { $firstRowColValue = $this->_matrixRowValues[0][$currentColumn]; $cofactor = $this->getCofactor(0, $currentColumn); $itemToAdd = $firstRowColValue*$cofactor; $result = $result + $itemToAdd; } return $result; } public function getAdjugate() { if (!$this->isSquare()) { throw new Exception("Matrix must be square!"); } // See http://en.wikipedia.org/wiki/Adjugate_matrix if ($this->_rowCount == 2) { // Happy path! // Adjugate of: // | a b | // | c d | // is // | d -b | // | -c a | $a = $this->_matrixRowData[0][0]; $b = $this->_matrixRowData[0][1]; $c = $this->_matrixRowData[1][0]; $d = $this->_matrixRowData[1][1]; return new SquareMatrix( $d, -$b, -$c, $a); } // The idea is that it's the transpose of the cofactors $result = array(); for ($currentColumn = 0; $currentColumn < $this->_columns; $currentColumn++) { for ($currentRow = 0; $currentRow < $this->_rowCount; $currentRow++) { $result[$currentColumn][$currentRow] = $this->getCofactor($currentRow, $currentColumn); } } return new Matrix($result); } public function getInverse() { if (($this->_rowCount == 1) && ($this->_columnCount == 1)) { return new SquareMatrix(1.0/$this->_matrixRowData[0][0]); } // Take the simple approach: // http://en.wikipedia.org/wiki/Cramer%27s_rule#Finding_inverse_matrix $determinantInverse = 1.0 / $this->getDeterminant(); $adjugate = $this->getAdjugate(); return self::scalarMultiply($determinantInverse, $adjugate); } public static function scalarMultiply($scalar, $matrix) { $rows = $matrix->getRowCount(); $columns = $matrix->getColumnCount(); $newValues = array(); for ($currentRow = 0; $currentRow < $rows; $currentRow++) { for ($currentColumn = 0; $currentColumn < $columns; $currentColumn++) { $newValues[$currentRow][$currentColumn] = $scalarValue*$matrix->getValue($currentRow, $currentColumn); } } return new Matrix($rows, $columns, $newValues); } public static function add($left, $right) { if ( ($left->getRowCount() != $right->getRowCount()) || ($left->getColumnCount() != $right->getColumnCount()) ) { throw new Exception("Matrices must be of the same size"); } // simple addition of each item $resultMatrix = array(); for ($currentRow = 0; $currentRow < $left->getRowCount(); $currentRow++) { for ($currentColumn = 0; $currentColumn < $right->getColumnCount(); $currentColumn++) { $resultMatrix[$currentRow][$currentColumn] = $left->getValue($currentRow, $currentColumn) + $right->getValue($currentRow, $currentColumn); } } return new Matrix($left->getRowCount(), $right->getColumnCount(), $resultMatrix); } public static function multiply($left, $right) { // Just your standard matrix multiplication. // See http://en.wikipedia.org/wiki/Matrix_multiplication for details if ($left->getColumnCount() != $right->getRowCount()) { throw new Exception("The width of the left matrix must match the height of the right matrix"); } $resultRows = $left->getRowCount(); $resultColumns = $right->getColumnCount(); $resultMatrix = array(); for ($currentRow = 0; $currentRow < $resultRows; $currentRow++) { for ($currentColumn = 0; $currentColumn < $resultColumns; $currentColumn++) { $productValue = 0; for ($vectorIndex = 0; $vectorIndex < $left->getColumnCount(); $vectorIndex++) { $leftValue = $left->getValue($currentRow, $vectorIndex); $rightValue = $right->getValue($vectorIndex, $currentColumn); $vectorIndexProduct = $leftValue*$rightValue; $productValue = $productValue + $vectorIndexProduct; } $resultMatrix[$currentRow][$currentColumn] = $productValue; } } return new Matrix($resultRows, $resultColumns, $resultMatrix); } private function getMinorMatrix($rowToRemove, $columnToRemove) { // See http://en.wikipedia.org/wiki/Minor_(linear_algebra) // I'm going to use a horribly naïve algorithm... because I can :) $result = array(); $actualRow = 0; for ($currentRow = 0; $currentRow < $this->_rowCount; $currentRow++) { if ($currentRow == $rowToRemove) { continue; } $actualCol = 0; for ($currentColumn = 0; $currentColumn < $this->_columnCount; $currentColumn++) { if ($currentColumn == $columnToRemove) { continue; } $result[$currentRow][$currentColumn] = $this->_matrixRowData[$currentRow][$currentColumn]; $actualCol++; } $actualRow++; } return new Matrix($this->_rowCount - 1, $this->_columnCount - 1, $result); } private function getCofactor($rowToRemove, $columnToRemove) { // See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for details // REVIEW: should things be reversed since I'm 0 indexed? $sum = $rowToRemove + $columnToRemove; $isEven = ($sum%2 == 0); if ($isEven) { return $this->getMinorMatrix($rowToRemove, $columnToRemove)->getDeterminant(); } else { return -1.0*$this->getMinorMatrix($rowToRemove, $columnToRemove)->getDeterminant(); } } } class Vector extends Matrix { public function __construct(array $vectorValues) { parent::__construct(count($vectorValues), 1, array($vectorValues)); } } class SquareMatrix extends Matrix { public function __construct() { $allValues = \func_get_args(); $rows = (int) sqrt(count($allValues)); $cols = $rows; $matrixData = array(); $allValuesIndex = 0; for ($currentRow = 0; $currentRow < $rows; $currentRow++) { for ($currentColumn = 0; $currentColumn < $cols; $currentColumn++) { $matrixData[$currentRow][$currentColumn] = $allValues[$allValuesIndex++]; } } parent::__construct($rows, $cols, $matrixData); } } class DiagonalMatrix extends Matrix { public function __construct(array $diagonalValues) { $diagonalCount = count($diagonalValues); $rowCount = $diagonalCount; $colCount = $rowCount; parent::__construct($rowCount, $colCount); for($i = 0; $i < $diagonalCount; $i++) { $this->setValue($i, $i, $diagonalValues[$i]); } } } class IdentityMatrix extends DiagonalMatrix { public function __construct($rows) { parent::__construct(\array_fill(0, $rows, 1)); } } ?>