mirror of
https://github.com/furyfire/trueskill.git
synced 2025-01-26 05:30:06 +00:00
Compare commits
4 Commits
8a0869d535
...
1ea48d8dd0
Author | SHA1 | Date | |
---|---|---|---|
1ea48d8dd0 | |||
f372d9a028 | |||
5bebd9310d | |||
b966a930a4 |
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,4 +1,4 @@
|
|||||||
.vscode
|
.*/
|
||||||
vendor
|
vendor
|
||||||
.*.cache/
|
.*.cache/
|
||||||
*.phar
|
*.phar
|
||||||
|
@ -1,6 +1,10 @@
|
|||||||
{
|
{
|
||||||
"runner.bootstrap": "vendor/autoload.php",
|
"runner.bootstrap": "vendor/autoload.php",
|
||||||
"runner.path": "benchmark/",
|
"runner.path": "benchmark/",
|
||||||
|
"runner.php_disable_ini": true,
|
||||||
|
"runner.retry_threshold": 5,
|
||||||
|
"runner.iterations": 10,
|
||||||
|
"storage.xml_storage_path": "output/benchmarking/",
|
||||||
"report.outputs": {
|
"report.outputs": {
|
||||||
"build-artifact": {
|
"build-artifact": {
|
||||||
"renderer": "html",
|
"renderer": "html",
|
||||||
@ -8,4 +12,5 @@
|
|||||||
"title": "Benchmarking"
|
"title": "Benchmarking"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -15,11 +15,11 @@ class BasicMath
|
|||||||
/**
|
/**
|
||||||
* Squares the input (x^2 = x * x)
|
* Squares the input (x^2 = x * x)
|
||||||
*
|
*
|
||||||
* @param float $x Value to square (x)
|
* @param $x Value to square (x)
|
||||||
*
|
*
|
||||||
* @return float The squared value (x^2)
|
* @return float The squared value (x^2)
|
||||||
*/
|
*/
|
||||||
public static function square($x): float
|
public static function square(float $x): float
|
||||||
{
|
{
|
||||||
return $x * $x;
|
return $x * $x;
|
||||||
}
|
}
|
||||||
|
@ -12,13 +12,11 @@ class DiagonalMatrix extends Matrix
|
|||||||
public function __construct(array $diagonalValues)
|
public function __construct(array $diagonalValues)
|
||||||
{
|
{
|
||||||
$diagonalCount = count($diagonalValues);
|
$diagonalCount = count($diagonalValues);
|
||||||
$rowCount = $diagonalCount;
|
|
||||||
$colCount = $rowCount;
|
|
||||||
|
|
||||||
parent::__construct($rowCount, $colCount);
|
parent::__construct($diagonalCount, $diagonalCount);
|
||||||
|
|
||||||
for ($currentRow = 0; $currentRow < $rowCount; $currentRow++) {
|
for ($currentRow = 0; $currentRow < $diagonalCount; $currentRow++) {
|
||||||
for ($currentCol = 0; $currentCol < $colCount; $currentCol++) {
|
for ($currentCol = 0; $currentCol < $diagonalCount; $currentCol++) {
|
||||||
if ($currentRow === $currentCol) {
|
if ($currentRow === $currentCol) {
|
||||||
$this->setValue($currentRow, $currentCol, $diagonalValues[$currentRow]);
|
$this->setValue($currentRow, $currentCol, $diagonalValues[$currentRow]);
|
||||||
} else {
|
} else {
|
||||||
|
@ -12,6 +12,13 @@ namespace DNW\Skills\Numerics;
|
|||||||
*/
|
*/
|
||||||
class GaussianDistribution implements \Stringable
|
class GaussianDistribution implements \Stringable
|
||||||
{
|
{
|
||||||
|
//sqrt(2*pi)
|
||||||
|
//from https://www.wolframalpha.com/input?i=sqrt%282*pi%29
|
||||||
|
private const M_SQRT_2_PI = 2.5066282746310005024157652848110452530069867406099383166299235763;
|
||||||
|
|
||||||
|
//log(sqrt(2*pi))
|
||||||
|
//From https://www.wolframalpha.com/input?i=log%28sqrt%282*pi%29%29
|
||||||
|
private const M_LOG_SQRT_2_PI = 0.9189385332046727417803297364056176398613974736377834128171515404;
|
||||||
// precision and precisionMean are used because they make multiplying and dividing simpler
|
// precision and precisionMean are used because they make multiplying and dividing simpler
|
||||||
// (the the accompanying math paper for more details)
|
// (the the accompanying math paper for more details)
|
||||||
private float $precision;
|
private float $precision;
|
||||||
@ -62,7 +69,7 @@ class GaussianDistribution implements \Stringable
|
|||||||
public function getNormalizationConstant(): float
|
public function getNormalizationConstant(): float
|
||||||
{
|
{
|
||||||
// Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf
|
// Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf
|
||||||
return 1.0 / (sqrt(2 * M_PI) * $this->standardDeviation);
|
return 1.0 / (self::M_SQRT_2_PI * $this->standardDeviation);
|
||||||
}
|
}
|
||||||
|
|
||||||
public static function fromPrecisionMean(float $precisionMean, float $precision): self
|
public static function fromPrecisionMean(float $precisionMean, float $precision): self
|
||||||
@ -115,9 +122,7 @@ class GaussianDistribution implements \Stringable
|
|||||||
$varianceSum = $left->variance + $right->variance;
|
$varianceSum = $left->variance + $right->variance;
|
||||||
$meanDifference = $left->mean - $right->mean;
|
$meanDifference = $left->mean - $right->mean;
|
||||||
|
|
||||||
$logSqrt2Pi = log(sqrt(2 * M_PI));
|
return -self::M_LOG_SQRT_2_PI - (log($varianceSum) / 2.0) - (BasicMath::square($meanDifference) / (2.0 * $varianceSum));
|
||||||
|
|
||||||
return -$logSqrt2Pi - (log($varianceSum) / 2.0) - (BasicMath::square($meanDifference) / (2.0 * $varianceSum));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator): self
|
public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator): self
|
||||||
@ -137,9 +142,7 @@ class GaussianDistribution implements \Stringable
|
|||||||
$varianceDifference = $denominator->variance - $numerator->variance;
|
$varianceDifference = $denominator->variance - $numerator->variance;
|
||||||
$meanDifference = $numerator->mean - $denominator->mean;
|
$meanDifference = $numerator->mean - $denominator->mean;
|
||||||
|
|
||||||
$logSqrt2Pi = log(sqrt(2 * M_PI));
|
return log($denominator->variance) + self::M_LOG_SQRT_2_PI - log($varianceDifference) / 2.0 +
|
||||||
|
|
||||||
return log($denominator->variance) + $logSqrt2Pi - log($varianceDifference) / 2.0 +
|
|
||||||
BasicMath::square($meanDifference) / (2 * $varianceDifference);
|
BasicMath::square($meanDifference) / (2 * $varianceDifference);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -150,7 +153,7 @@ class GaussianDistribution implements \Stringable
|
|||||||
// P(x) = ------------------- * e
|
// P(x) = ------------------- * e
|
||||||
// stdDev * sqrt(2*pi)
|
// stdDev * sqrt(2*pi)
|
||||||
|
|
||||||
$multiplier = 1.0 / ($standardDeviation * sqrt(2 * M_PI));
|
$multiplier = 1.0 / ($standardDeviation * self::M_SQRT_2_PI);
|
||||||
$expPart = exp((-1.0 * BasicMath::square($x - $mean)) / (2 * BasicMath::square($standardDeviation)));
|
$expPart = exp((-1.0 * BasicMath::square($x - $mean)) / (2 * BasicMath::square($standardDeviation)));
|
||||||
|
|
||||||
return $multiplier * $expPart;
|
return $multiplier * $expPart;
|
||||||
@ -158,8 +161,7 @@ class GaussianDistribution implements \Stringable
|
|||||||
|
|
||||||
public static function cumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
|
public static function cumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
|
||||||
{
|
{
|
||||||
$invsqrt2 = -0.707106781186547524400844362104;
|
$result = GaussianDistribution::errorFunctionCumulativeTo(-M_SQRT1_2 * $x);
|
||||||
$result = GaussianDistribution::errorFunctionCumulativeTo($invsqrt2 * $x);
|
|
||||||
|
|
||||||
return 0.5 * $result;
|
return 0.5 * $result;
|
||||||
}
|
}
|
||||||
@ -231,11 +233,11 @@ class GaussianDistribution implements \Stringable
|
|||||||
|
|
||||||
$pp = ($p < 1.0) ? $p : 2 - $p;
|
$pp = ($p < 1.0) ? $p : 2 - $p;
|
||||||
$t = sqrt(-2 * log($pp / 2.0)); // Initial guess
|
$t = sqrt(-2 * log($pp / 2.0)); // Initial guess
|
||||||
$x = -0.70711 * ((2.30753 + $t * 0.27061) / (1.0 + $t * (0.99229 + $t * 0.04481)) - $t);
|
$x = -M_SQRT1_2 * ((2.30753 + $t * 0.27061) / (1.0 + $t * (0.99229 + $t * 0.04481)) - $t);
|
||||||
|
|
||||||
for ($j = 0; $j < 2; $j++) {
|
for ($j = 0; $j < 2; $j++) {
|
||||||
$err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp;
|
$err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp;
|
||||||
$x += $err / (1.12837916709551257 * exp(-BasicMath::square($x)) - $x * $err); // Halley
|
$x += $err / (M_2_SQRTPI * exp(-BasicMath::square($x)) - $x * $err); // Halley
|
||||||
}
|
}
|
||||||
|
|
||||||
return ($p < 1.0) ? $x : -$x;
|
return ($p < 1.0) ? $x : -$x;
|
||||||
@ -244,7 +246,7 @@ class GaussianDistribution implements \Stringable
|
|||||||
public static function inverseCumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
|
public static function inverseCumulativeTo(float $x, float $mean = 0.0, float $standardDeviation = 1.0): float
|
||||||
{
|
{
|
||||||
// From numerical recipes, page 320
|
// From numerical recipes, page 320
|
||||||
return $mean - sqrt(2) * $standardDeviation * GaussianDistribution::inverseErrorFunctionCumulativeTo(2 * $x);
|
return $mean - M_SQRT2 * $standardDeviation * GaussianDistribution::inverseErrorFunctionCumulativeTo(2 * $x);
|
||||||
}
|
}
|
||||||
|
|
||||||
public function __toString(): string
|
public function __toString(): string
|
||||||
|
@ -8,18 +8,17 @@ class SquareMatrix extends Matrix
|
|||||||
{
|
{
|
||||||
public function __construct(float|int ...$allValues)
|
public function __construct(float|int ...$allValues)
|
||||||
{
|
{
|
||||||
$rows = (int)sqrt(count($allValues));
|
$size = (int)sqrt(count($allValues));
|
||||||
$cols = $rows;
|
|
||||||
|
|
||||||
$matrixData = [];
|
$matrixData = [];
|
||||||
$allValuesIndex = 0;
|
$allValuesIndex = 0;
|
||||||
|
|
||||||
for ($currentRow = 0; $currentRow < $rows; $currentRow++) {
|
for ($currentRow = 0; $currentRow < $size; $currentRow++) {
|
||||||
for ($currentColumn = 0; $currentColumn < $cols; $currentColumn++) {
|
for ($currentColumn = 0; $currentColumn < $size; $currentColumn++) {
|
||||||
$matrixData[$currentRow][$currentColumn] = $allValues[$allValuesIndex++];
|
$matrixData[$currentRow][$currentColumn] = $allValues[$allValuesIndex++];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
parent::__construct($rows, $cols, $matrixData);
|
parent::__construct($size, $size, $matrixData);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -18,6 +18,6 @@ final class DrawMargin
|
|||||||
//
|
//
|
||||||
// margin = inversecdf((draw probability + 1)/2) * sqrt(n1+n2) * beta
|
// margin = inversecdf((draw probability + 1)/2) * sqrt(n1+n2) * beta
|
||||||
// n1 and n2 are the number of players on each team
|
// n1 and n2 are the number of players on each team
|
||||||
return GaussianDistribution::inverseCumulativeTo(.5 * ($drawProbability + 1), 0, 1) * sqrt(1 + 1) * $beta;
|
return GaussianDistribution::inverseCumulativeTo(.5 * ($drawProbability + 1), 0, 1) * M_SQRT2 * $beta;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -181,7 +181,6 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
|||||||
}
|
}
|
||||||
|
|
||||||
$newPrecision = 1.0 / $inverseOfNewPrecisionSum;
|
$newPrecision = 1.0 / $inverseOfNewPrecisionSum;
|
||||||
$anotherNewPrecision = 1.0 / $anotherInverseOfNewPrecisionSum;
|
|
||||||
|
|
||||||
$newPrecisionMean = $newPrecision * $weightedMeanSum;
|
$newPrecisionMean = $newPrecision * $weightedMeanSum;
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user