mirror of
https://github.com/furyfire/trueskill.git
synced 2025-03-19 08:18:38 +00:00
More tests more resistance to mutation testing.
All checks were successful
ci/woodpecker/manual/woodpecker Pipeline was successful
All checks were successful
ci/woodpecker/manual/woodpecker Pipeline was successful
This commit is contained in:
@ -92,6 +92,20 @@ class GaussianDistributionTest extends TestCase
|
||||
$m3s4 = new GaussianDistribution(3, 4);
|
||||
$lpn2 = GaussianDistribution::logProductNormalization($m1s2, $m3s4);
|
||||
$this->assertEqualsWithDelta(-2.5168046699816684, $lpn2, GaussianDistributionTest::ERROR_TOLERANCE);
|
||||
|
||||
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$lrn = GaussianDistribution::logProductNormalization($numerator, $denominator);
|
||||
$this->assertEquals(0, $lrn);
|
||||
|
||||
$numerator = GaussianDistribution::fromPrecisionMean(1, 1);
|
||||
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$lrn = GaussianDistribution::logProductNormalization($numerator, $denominator);
|
||||
$this->assertEquals(0, $lrn);
|
||||
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$denominator = GaussianDistribution::fromPrecisionMean(1, 1);
|
||||
$lrn = GaussianDistribution::logProductNormalization($numerator, $denominator);
|
||||
$this->assertEquals(0, $lrn);
|
||||
}
|
||||
|
||||
public function testLogRatioNormalization(): void
|
||||
@ -101,6 +115,20 @@ class GaussianDistributionTest extends TestCase
|
||||
$m3s4 = new GaussianDistribution(3, 4);
|
||||
$lrn = GaussianDistribution::logRatioNormalization($m1s2, $m3s4);
|
||||
$this->assertEqualsWithDelta(2.6157405972171204, $lrn, GaussianDistributionTest::ERROR_TOLERANCE);
|
||||
|
||||
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$lrn = GaussianDistribution::logRatioNormalization($numerator, $denominator);
|
||||
$this->assertEquals(0, $lrn);
|
||||
|
||||
$numerator = GaussianDistribution::fromPrecisionMean(1, 1);
|
||||
$denominator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$lrn = GaussianDistribution::logRatioNormalization($numerator, $denominator);
|
||||
$this->assertEquals(0, $lrn);
|
||||
$numerator = GaussianDistribution::fromPrecisionMean(1, 0);
|
||||
$denominator = GaussianDistribution::fromPrecisionMean(1, 1);
|
||||
$lrn = GaussianDistribution::logRatioNormalization($numerator, $denominator);
|
||||
$this->assertEquals(0, $lrn);
|
||||
}
|
||||
|
||||
public function testAbsoluteDifference(): void
|
||||
@ -115,4 +143,27 @@ class GaussianDistributionTest extends TestCase
|
||||
$absDiff2 = GaussianDistribution::absoluteDifference($m1s2, $m3s4);
|
||||
$this->assertEqualsWithDelta(0.4330127018922193, $absDiff2, GaussianDistributionTest::ERROR_TOLERANCE);
|
||||
}
|
||||
|
||||
public function testSubtract(): void
|
||||
{
|
||||
// Verified with Ralf Herbrich's F# implementation
|
||||
$standardNormal = new GaussianDistribution(0, 1);
|
||||
$absDiff = GaussianDistribution::subtract($standardNormal, $standardNormal);
|
||||
$this->assertEqualsWithDelta(0.0, $absDiff, GaussianDistributionTest::ERROR_TOLERANCE);
|
||||
|
||||
$m1s2 = new GaussianDistribution(1, 2);
|
||||
$m3s4 = new GaussianDistribution(3, 4);
|
||||
$absDiff2 = GaussianDistribution::subtract($m1s2, $m3s4);
|
||||
$this->assertEqualsWithDelta(0.4330127018922193, $absDiff2, GaussianDistributionTest::ERROR_TOLERANCE);
|
||||
}
|
||||
|
||||
public function testfromPrecisionMean(): void
|
||||
{
|
||||
$gd = GaussianDistribution::fromPrecisionMean(0, 0);
|
||||
$this->assertInfinite($gd->getVariance());
|
||||
$this->assertInfinite($gd->getStandardDeviation());
|
||||
$this->assertNan($gd->getMean());
|
||||
$this->assertEquals(0, $gd->getPrecisionMean());
|
||||
$this->assertEquals(0, $gd->getPrecision());
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user