Start of factor graph port. Things don't work yet, but a lot of syntax updates towards PHP

This commit is contained in:
Jeff Moser
2010-09-18 11:11:44 -04:00
parent 4a76cc34cc
commit e434696b44
25 changed files with 1637 additions and 20 deletions

View File

@ -0,0 +1,32 @@
<?php
namespace Moserware\Skills\TrueSkill\Factors;
abstract class GaussianFactor extends Factor
{
protected function __construct($name)
{
parent::__construct($name);
}
/// Sends the factor-graph message with and returns the log-normalization constant
protected function sendMessageVariable(Message $message, Variable $variable)
{
$marginal = $variable->getValue();
$messageValue = $message->getValue();
$logZ = GaussianDistribution::logProductNormalization($marginal, $messageValue);
$variable->setValue($marginal*$messageValue);
return $logZ;
}
public function createVariableToMessageBinding(Variable $variable)
{
return parent::createVariableToMessageBinding($variable,
new Message(
GaussianDistribution::fromPrecisionMean(0, 0),
"message from {0} to {1}", $this));
}
}
?>

View File

@ -0,0 +1,73 @@
<?php
namespace Moserware\Skills\TrueSkill\Factors;
/// <summary>
/// Factor representing a team difference that has exceeded the draw margin.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
class GaussianGreaterThanFactor extends GaussianFactor
{
private $_epsilon;
public function __construct($epsilon, Variable $variable)
{
parent::_construct("{0} > {1:0.000}");
$this->_epsilon = $epsilon;
$this->createVariableToMessageBinding($variable);
}
public function getLogNormalization()
{
$vars = $this->getVariables();
$marginal = $vars[0]->getValue();
$messages = $this->getMessages();
$message = $messages[0]->getValue();
$messageFromVariable = GaussianDistribution::divide($marginal, $message);
return -GaussianDistribution::logProductNormalization($messageFromVariable, $message)
+
log(
GaussianDistribution::cumulativeTo(($messageFromVariable->getMean() - $this->_epsilon)/
$messageFromVariable->getStandardDeviation()));
}
protected function updateMessageVariable(Message $message, Variable $variable)
{
$oldMarginal = clone $variable->getValue();
$oldMessage = clone $message->getValue();
$messageFromVar = GaussianDistribution::divide($oldMarginal, $oldMessage);
$c = $messageFromVar->getPrecision();
$d = $messageFromVar->getPrecisionMean();
$sqrtC = sqrt($c);
$dOnSqrtC = $d/$sqrtC;
$epsilsonTimesSqrtC = $this->_epsilon*$sqrtC;
$d = $messageFromVar->getPrecisionMean();
$denom = 1.0 - TruncatedGaussianCorrectionFunctions::vExceedsMargin($dOnSqrtC, $epsilsonTimesSqrtC);
$newPrecision = $c/$denom;
$newPrecisionMean = ($d +
$sqrtC*
TruncatedGaussianCorrectionFunctions::vExceedsMargin($dOnSqrtC, $epsilsonTimesSqrtC))/
$denom;
$newMarginal = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
$newMessage = GaussianDistribution::divide(
GaussianDistribution::multiply($oldMessage, $newMarginal),
$oldMarginal);
/// Update the message and marginal
$message->setValue($newMessage);
$variable->setValue($newMarginal);
/// Return the difference in the new marginal
return GaussianDistribution::subtract($newMarginal, $oldMarginal);
}
}
?>

View File

@ -0,0 +1,78 @@
<?php
namespace Moserware\Skills\TrueSkill\Factors;
/// <summary>
/// Connects two variables and adds uncertainty.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
class GaussianLikelihoodFactor extends GaussianFactor
{
private $_precision;
public function __construct($betaSquared, Variable $variable1, Variable $variable2)
{
parent::__construct("Likelihood of {0} going to {1}");
$this->_precision = 1.0/$betaSquared;
$this->createVariableToMessageBinding($variable1);
$this->createVariableToMessageBinding($variable2);
}
public function getLogNormalization()
{
$vars = $this->getVariables();
$messages = $this->getMessages();
return GaussianDistribution::logRatioNormalization(
$vars[0]->getValue(),
$messages[0]->getValue());
}
private function updateHelper(Message $message1, Message $message2,
Variable $variable1, Variable $variable2)
{
$message1Value = clone $message1->getValue();
$message2Value = clone $message2->getValue();
$marginal1 = clone $variable1->getValue();
$marginal2 = clone $variable2->getValue();
$a = $this->_precision/($this->_precision + $marginal2->getPrecision() - $message2Value->getPrecision());
$newMessage = GaussianDistribution::fromPrecisionMean(
$a*($marginal2->getPrecisionMean() - $message2Value->getPrecisionMean()),
$a*($marginal2->getPrecision() - $message2Value->getPrecision()));
$oldMarginalWithoutMessage = GaussianDistribution::divide($marginal1, $message1Value);
$newMarginal = GaussianDistribution::multiply($oldMarginalWithoutMessage, $newMessage);
/// Update the message and marginal
$message1->setValue($newMessage);
$variable1->setValue($newMarginal);
/// Return the difference in the new marginal
return GaussianDistribution::subtract($newMarginal, $marginal1);
}
public function updateMessageIndex($messageIndex)
{
$messages = $this->getMessages();
$vars = $this->getVariables();
switch ($messageIndex)
{
case 0:
return $this->updateHelper($messages[0], $messages[1],
$vars[0], $vars[1]);
case 1:
return $this->updateHelper($messages[1], $messages[0],
$vars[1], $vars[0]);
default:
throw new Exception();
}
}
}
?>

View File

@ -0,0 +1,40 @@
<?php
namespace Moserware\Skills\TrueSkill\Factors;
/// <summary>
/// Supplies the factor graph with prior information.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
class GaussianPriorFactor extends GaussianFactor
{
private $_newMessage;
public function __construct($mean, $variance, Variable $variable)
{
parent::__construct("Prior value going to {0}");
$this->_newMessage = new GaussianDistribution($mean, sqrt($variance));
$this->createVariableToMessageBinding($variable,
new Message(
GaussianDistribution::fromPrecisionMean(0, 0),
"message from {0} to {1}",
this, variable));
}
protected function updateMessageVariable(Message $message, Variable $variable)
{
$oldMarginal = clone $variable->getValue();
$oldMessage = $message;
$newMarginal =
GaussianDistribution::fromPrecisionMean(
$oldMarginal->getPrecisionMean() + $this->_newMessage->getPrecisionMean() - $oldMessage->getValue()->getPrecisionMean(),
$oldMarginal->getPrecision() + $this->_newMessage->getPrecision() - $oldMessage->getValue()->getPrecision());
$variable->setValue($newMarginal);
$message->setValue($this->_newMessage);
return GaussianDistribution::subtract($oldMarginal, $newMarginal);
}
}
?>

View File

@ -0,0 +1,216 @@
<?php
namespace Moserware\Skills\TrueSkill\Factors;
/// <summary>
/// Factor that sums together multiple Gaussians.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
class GaussianWeightedSumFactor extends GaussianFactor
{
private $_variableIndexOrdersForWeights = array();
// This following is used for convenience, for example, the first entry is [0, 1, 2]
// corresponding to v[0] = a1*v[1] + a2*v[2]
private $_weights;
private $_weightsSquared;
public function __construct(Variable $sumVariable, array $variablesToSum, array $variableWeights = null)
{
parent::__construct($this->createName($sumVariable, $variablesToSum, $variableWeights));
$this->_weights = array();
$this->_weightsSquared = array();
// The first weights are a straightforward copy
// v_0 = a_1*v_1 + a_2*v_2 + ... + a_n * v_n
$this->_weights[0] = array();
$variableWeightsLength = count($variableWeights);
for($i = 0; $i < $variableWeightsLength; $i++)
{
$weight = $variableWeights[$i];
$this->_weights[0][$i] = $weight;
$this->_weightsSquared[0][i] = $weight * $weight;
}
$variablesToSumLength = count($variablesToSum);
// 0..n-1
for($i = 0; $i < ($variablesToSumLength + 1); $i++)
{
$this->_variableIndexOrdersForWeights[] = $i;
}
// The rest move the variables around and divide out the constant.
// For example:
// v_1 = (-a_2 / a_1) * v_2 + (-a3/a1) * v_3 + ... + (1.0 / a_1) * v_0
// By convention, we'll put the v_0 term at the end
$weightsLength = $variableWeightsLength + 1;
for ($weightsIndex = 1; $weightsIndex < $weightsLength; $weightsIndex++)
{
$this->_weights[$weightsIndex] = array();
$variableIndices = array();
$variableIndices[] = $weightsIndex;
$currentWeightsSquared = array();
$this->_WeightsSquared[$weightsIndex] = $currentWeightsSquared;
// keep a single variable to keep track of where we are in the array.
// This is helpful since we skip over one of the spots
$currentDestinationWeightIndex = 0;
for ($currentWeightSourceIndex = 0;
$currentWeightSourceIndex < $variableWeights.Length;
$currentWeightSourceIndex++)
{
if ($currentWeightSourceIndex == ($weightsIndex - 1))
{
continue;
}
$currentWeight = (-$variableWeights[$currentWeightSourceIndex]/$variableWeights[$weightsIndex - 1]);
if ($variableWeights[$weightsIndex - 1] == 0)
{
// HACK: Getting around division by zero
$currentWeight = 0;
}
$currentWeights[$currentDestinationWeightIndex] = $currentWeight;
$currentWeightsSquared[$currentDestinationWeightIndex] = $currentWeight*currentWeight;
$variableIndices[$currentDestinationWeightIndex + 1] = $currentWeightSourceIndex + 1;
$currentDestinationWeightIndex++;
}
// And the final one
$finalWeight = 1.0/$variableWeights[$weightsIndex - 1];
if ($variableWeights[$weightsIndex - 1] == 0)
{
// HACK: Getting around division by zero
$finalWeight = 0;
}
$currentWeights[$currentDestinationWeightIndex] = finalWeight;
$currentWeightsSquared[currentDestinationWeightIndex] = finalWeight*finalWeight;
$variableIndices[$variableIndices.Length - 1] = 0;
$this->_variableIndexOrdersForWeights[] = $variableIndices;
}
$this->createVariableToMessageBinding($sumVariable);
foreach ($variablesToSum as $currentVariable)
{
$this->createVariableToMessageBinding($currentVariable);
}
}
public function getLogNormalization()
{
$vars = $this->getVariables();
$messages = $this->getMessages();
$result = 0.0;
// We start at 1 since offset 0 has the sum
$varCount = count($vars);
for ($i = 1; $i < $varCount; $i++)
{
$result += GaussianDistribution::logRatioNormalization($vars[i]->getValue(), $messages[i]->getValue());
}
return $result;
}
private function updateHelper(array $weights, array $weightsSquared,
array $messages,
array $variables)
{
// Potentially look at http://mathworld.wolfram.com/NormalSumDistribution.html for clues as
// to what it's doing
$messages = $this->getMessages();
$message0 = clone $messages[0]->getValue();
$marginal0 = clone $variables[0]->getValue();
// The math works out so that 1/newPrecision = sum of a_i^2 /marginalsWithoutMessages[i]
$inverseOfNewPrecisionSum = 0.0;
$anotherInverseOfNewPrecisionSum = 0.0;
$weightedMeanSum = 0.0;
$anotherWeightedMeanSum = 0.0;
$weightsSquaredLength = count($weightsSquared);
for ($i = 0; $i < $weightsSquaredLength; $i++)
{
// These flow directly from the paper
$inverseOfNewPrecisionSum += $weightsSquared[i]/
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
$diff = GaussianDistribution::divide($variables[$i + 1]->getValue(), $messages[$i + 1]->getValue());
$anotherInverseOfNewPrecisionSum += $weightsSquared[i]/$diff->getPrecision();
$weightedMeanSum += $weights[i]
*
($variables[$i + 1]->getValue()->getPrecisionMean() - $messages[$i + 1]->getValue()->getPrecisionMean())
/
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
$anotherWeightedMeanSum += $weights[$i]*$diff->getPrecisionMean()/$diff->getPrecision();
}
$newPrecision = 1.0/$inverseOfNewPrecisionSum;
$anotherNewPrecision = 1.0/$anotherInverseOfNewPrecisionSum;
$newPrecisionMean = $newPrecision*$weightedMeanSum;
$anotherNewPrecisionMean = $anotherNewPrecision*$anotherWeightedMeanSum;
$newMessage = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
$oldMarginalWithoutMessage = GaussianDistribution::divide($marginal0, $message0);
$newMarginal = GaussianDistribution::multiply($oldMarginalWithoutMessage, $newMessage);
/// Update the message and marginal
$messages[0]->setValue($newMessage);
$variables[0]->setValue($newMarginal);
/// Return the difference in the new marginal
$finalDiff = GaussianDistribution::subtract($newMarginal, $marginal0);
return $finalDiff;
}
public function updateMessageIndex($messageIndex)
{
$allMessages = $this->getMessages();
$allVariables = $this->getVariables();
Guard::argumentIsValidIndex($messageIndex, count($allMessages),"messageIndex");
$updatedMessages = array();
$updatedVariables = array();
$indicesToUse = $this->_variableIndexOrdersForWeights[$messageIndex];
// The tricky part here is that we have to put the messages and variables in the same
// order as the weights. Thankfully, the weights and messages share the same index numbers,
// so we just need to make sure they're consistent
$allMessagesCount = count($allMessages);
for ($i = 0; i < $allMessagesCount; $i++)
{
$updatedMessages[] =$allMessages[$indicesToUse[$i]];
$updatedVariables[] = $allVariables[$indicesToUse[$i]];
}
return updateHelper($this->_weights[$messageIndex],
$this->_weightsSquared[$messageIndex],
$updatedMessages,
$updatedVariables);
}
}
?>

View File

@ -0,0 +1,72 @@
<?php
namespace Moserware\Skills\TrueSkill\Factors;
/// <summary>
/// Factor representing a team difference that has not exceeded the draw margin.
/// </summary>
/// <remarks>See the accompanying math paper for more details.</remarks>
class GaussianWithinFactor extends GaussianFactor
{
private $_epsilon;
public function __construct($epsilon, Variable $variable)
{
$this->_epsilon = $epsilon;
$this->createVariableToMessageBinding($variable);
}
public function getLogNormalization()
{
$variables = $this->getVariables();
$marginal = $variables[0]->getValue();
$messages = $this->getMessages();
$message = $messages[0]->getValue();
$messageFromVariable = GaussianDistribution::divide($marginal, $message);
$mean = $messageFromVariable->getMean();
$std = $messageFromVariable->getStandardDeviation();
$z = GaussianDistribution::cumulativeTo(($this->_epsilon - $mean)/$std)
-
GaussianDistribution::cumulativeTo((-$this->_epsilon - $mean)/$std);
return -GaussianDistribution::logProductNormalization($messageFromVariable, $message) + log($z);
}
protected function updateMessage(Message $message, Variable $variable)
{
$oldMarginal = clone $variable->getValue();
$oldMessage = clone $message->getValue();
$messageFromVariable = GaussianDistribution::divide($oldMarginal, $oldMessage);
$c = $messageFromVariable->getPrecision();
$d = $messageFromVariable->getPrecisionMean();
$sqrtC = sqrt($c);
$dOnSqrtC = $d/$sqrtC;
$epsilonTimesSqrtC = $this->_epsilon*$sqrtC;
$d = $messageFromVariable->getPrecisionMean();
$denominator = 1.0 - TruncatedGaussianCorrectionFunctions::wWithinMargin($dOnSqrtC, $epsilonTimesSqrtC);
$newPrecision = $c/$denominator;
$newPrecisionMean = ($d +
$sqrtC*
TruncatedGaussianCorrectionFunctions::vWithinMargin($dOnSqrtC, $epsilonTimesSqrtC))/
$denominator;
$newMarginal = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
$newMessage = GaussianDistribution::divide(
GaussianDistribution::multiply($oldMessage, $newMarginal),
$oldMarginal);
/// Update the message and marginal
$message->setValue($newMessage);
$variable->setValue($newMarginal);
/// Return the difference in the new marginal
return GaussianDistribution::subtract($newMarginal, $oldMarginal);
}
}
?>