mirror of
https://github.com/furyfire/trueskill.git
synced 2025-01-16 01:47:39 +00:00
Updated GaussianDistributionTests.cs based off feedback from nsp
This commit is contained in:
@ -9,6 +9,22 @@ namespace UnitTests.Numerics
|
|||||||
{
|
{
|
||||||
private const double ErrorTolerance = 0.000001;
|
private const double ErrorTolerance = 0.000001;
|
||||||
|
|
||||||
|
[Test]
|
||||||
|
public void CumulativeToTests()
|
||||||
|
{
|
||||||
|
// Verified with WolframAlpha
|
||||||
|
// (e.g. http://www.wolframalpha.com/input/?i=CDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
|
||||||
|
Assert.AreEqual(0.691462, GaussianDistribution.CumulativeTo(0.5), ErrorTolerance);
|
||||||
|
}
|
||||||
|
|
||||||
|
[Test]
|
||||||
|
public void AtTests()
|
||||||
|
{
|
||||||
|
// Verified with WolframAlpha
|
||||||
|
// (e.g. http://www.wolframalpha.com/input/?i=PDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
|
||||||
|
Assert.AreEqual(0.352065, GaussianDistribution.At(0.5), ErrorTolerance);
|
||||||
|
}
|
||||||
|
|
||||||
[Test]
|
[Test]
|
||||||
public void MultiplicationTests()
|
public void MultiplicationTests()
|
||||||
{
|
{
|
||||||
@ -56,13 +72,39 @@ namespace UnitTests.Numerics
|
|||||||
[Test]
|
[Test]
|
||||||
public void LogProductNormalizationTests()
|
public void LogProductNormalizationTests()
|
||||||
{
|
{
|
||||||
var m4s5 = new GaussianDistribution(4, 5);
|
// Verified with Ralf Herbrich's F# implementation
|
||||||
var m6s7 = new GaussianDistribution(6, 7);
|
var standardNormal = new GaussianDistribution(0, 1);
|
||||||
|
var lpn = GaussianDistribution.LogProductNormalization(standardNormal, standardNormal);
|
||||||
|
Assert.AreEqual(-1.2655121234846454, lpn, ErrorTolerance);
|
||||||
|
|
||||||
var product2 = m4s5 * m6s7;
|
var m1s2 = new GaussianDistribution(1, 2);
|
||||||
var normConstant = 1.0 / (Math.Sqrt(2 * Math.PI) * product2.StandardDeviation);
|
var m3s4 = new GaussianDistribution(3, 4);
|
||||||
var lpn = GaussianDistribution.LogProductNormalization(m4s5, m6s7);
|
var lpn2 = GaussianDistribution.LogProductNormalization(m1s2, m3s4);
|
||||||
|
Assert.AreEqual(-2.5168046699816684, lpn2, ErrorTolerance);
|
||||||
|
}
|
||||||
|
|
||||||
|
[Test]
|
||||||
|
public void LogRatioNormalizationTests()
|
||||||
|
{
|
||||||
|
// Verified with Ralf Herbrich's F# implementation
|
||||||
|
var m1s2 = new GaussianDistribution(1, 2);
|
||||||
|
var m3s4 = new GaussianDistribution(3, 4);
|
||||||
|
var lrn = GaussianDistribution.LogRatioNormalization(m1s2, m3s4);
|
||||||
|
Assert.AreEqual(2.6157405972171204, lrn, ErrorTolerance);
|
||||||
|
}
|
||||||
|
|
||||||
|
[Test]
|
||||||
|
public void AbsoluteDifferenceTests()
|
||||||
|
{
|
||||||
|
// Verified with Ralf Herbrich's F# implementation
|
||||||
|
var standardNormal = new GaussianDistribution(0, 1);
|
||||||
|
var absDiff = GaussianDistribution.AbsoluteDifference(standardNormal, standardNormal);
|
||||||
|
Assert.AreEqual(0.0, absDiff, ErrorTolerance);
|
||||||
|
|
||||||
|
var m1s2 = new GaussianDistribution(1, 2);
|
||||||
|
var m3s4 = new GaussianDistribution(3, 4);
|
||||||
|
var absDiff2 = GaussianDistribution.AbsoluteDifference(m1s2, m3s4);
|
||||||
|
Assert.AreEqual(0.4330127018922193, absDiff2, ErrorTolerance);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
Reference in New Issue
Block a user