mirror of
https://github.com/furyfire/trueskill.git
synced 2025-06-28 23:40:55 +00:00
Cleanup in src/, adding namespaces, removing php closing tag and general code cleanup
This commit is contained in:
@ -1,16 +1,9 @@
|
||||
<?php
|
||||
<?php namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Factor.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
|
||||
|
||||
use Moserware\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\FactorGraphs\Factor;
|
||||
use Moserware\Skills\FactorGraphs\Message;
|
||||
use Moserware\Skills\FactorGraphs\Variable;
|
||||
use Moserware\Skills\Numerics\GaussianDistribution;
|
||||
|
||||
abstract class GaussianFactor extends Factor
|
||||
{
|
||||
@ -21,6 +14,9 @@ abstract class GaussianFactor extends Factor
|
||||
|
||||
/**
|
||||
* Sends the factor-graph message with and returns the log-normalization constant.
|
||||
* @param Message $message
|
||||
* @param Variable $variable
|
||||
* @return float|int
|
||||
*/
|
||||
protected function sendMessageVariable(Message &$message, Variable &$variable)
|
||||
{
|
||||
@ -35,11 +31,9 @@ abstract class GaussianFactor extends Factor
|
||||
{
|
||||
$newDistribution = GaussianDistribution::fromPrecisionMean(0, 0);
|
||||
$binding = &parent::createVariableToMessageBindingWithMessage($variable,
|
||||
new Message(
|
||||
$newDistribution,
|
||||
sprintf("message from %s to %s", $this, $variable)));
|
||||
new Message(
|
||||
$newDistribution,
|
||||
sprintf("message from %s to %s", $this, $variable)));
|
||||
return $binding;
|
||||
}
|
||||
}
|
||||
|
||||
?>
|
||||
}
|
@ -1,13 +1,6 @@
|
||||
<?php
|
||||
namespace Moserware\Skills\TrueSkill\Factors;
|
||||
<?php namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
|
||||
require_once(dirname(__FILE__) . "/../TruncatedGaussianCorrectionFunctions.php");
|
||||
require_once(dirname(__FILE__) . "/GaussianFactor.php");
|
||||
|
||||
use Moserware\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\TrueSkill\TruncatedGaussianCorrectionFunctions;
|
||||
use Moserware\Skills\FactorGraphs\Message;
|
||||
use Moserware\Skills\FactorGraphs\Variable;
|
||||
@ -36,10 +29,10 @@ class GaussianGreaterThanFactor extends GaussianFactor
|
||||
$message = &$messages[0]->getValue();
|
||||
$messageFromVariable = GaussianDistribution::divide($marginal, $message);
|
||||
return -GaussianDistribution::logProductNormalization($messageFromVariable, $message)
|
||||
+
|
||||
log(
|
||||
GaussianDistribution::cumulativeTo(($messageFromVariable->getMean() - $this->_epsilon)/
|
||||
$messageFromVariable->getStandardDeviation()));
|
||||
+
|
||||
log(
|
||||
GaussianDistribution::cumulativeTo(($messageFromVariable->getMean() - $this->_epsilon) /
|
||||
$messageFromVariable->getStandardDeviation()));
|
||||
|
||||
}
|
||||
|
||||
@ -54,24 +47,24 @@ class GaussianGreaterThanFactor extends GaussianFactor
|
||||
|
||||
$sqrtC = sqrt($c);
|
||||
|
||||
$dOnSqrtC = $d/$sqrtC;
|
||||
$dOnSqrtC = $d / $sqrtC;
|
||||
|
||||
$epsilsonTimesSqrtC = $this->_epsilon*$sqrtC;
|
||||
$epsilsonTimesSqrtC = $this->_epsilon * $sqrtC;
|
||||
$d = $messageFromVar->getPrecisionMean();
|
||||
|
||||
$denom = 1.0 - TruncatedGaussianCorrectionFunctions::wExceedsMargin($dOnSqrtC, $epsilsonTimesSqrtC);
|
||||
|
||||
$newPrecision = $c/$denom;
|
||||
$newPrecision = $c / $denom;
|
||||
$newPrecisionMean = ($d +
|
||||
$sqrtC*
|
||||
TruncatedGaussianCorrectionFunctions::vExceedsMargin($dOnSqrtC, $epsilsonTimesSqrtC))/
|
||||
$denom;
|
||||
$sqrtC *
|
||||
TruncatedGaussianCorrectionFunctions::vExceedsMargin($dOnSqrtC, $epsilsonTimesSqrtC)) /
|
||||
$denom;
|
||||
|
||||
$newMarginal = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
|
||||
|
||||
$newMessage = GaussianDistribution::divide(
|
||||
GaussianDistribution::multiply($oldMessage, $newMarginal),
|
||||
$oldMarginal);
|
||||
GaussianDistribution::multiply($oldMessage, $newMarginal),
|
||||
$oldMarginal);
|
||||
|
||||
// Update the message and marginal
|
||||
$message->setValue($newMessage);
|
||||
@ -81,5 +74,4 @@ class GaussianGreaterThanFactor extends GaussianFactor
|
||||
// Return the difference in the new marginal
|
||||
return GaussianDistribution::subtract($newMarginal, $oldMarginal);
|
||||
}
|
||||
}
|
||||
?>
|
||||
}
|
@ -1,18 +1,13 @@
|
||||
<?php
|
||||
namespace Moserware\Skills\TrueSkill\Factors;
|
||||
<?php namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
|
||||
require_once(dirname(__FILE__) . "/GaussianFactor.php");
|
||||
|
||||
use Moserware\Numerics\GaussianDistribution;
|
||||
use Exception;
|
||||
use Moserware\Skills\FactorGraphs\Message;
|
||||
use Moserware\Skills\FactorGraphs\Variable;
|
||||
use Moserware\Skills\Numerics\GaussianDistribution;
|
||||
|
||||
/**
|
||||
* Connects two variables and adds uncertainty.
|
||||
*
|
||||
*
|
||||
* See the accompanying math paper for more details.
|
||||
*/
|
||||
class GaussianLikelihoodFactor extends GaussianFactor
|
||||
@ -22,7 +17,7 @@ class GaussianLikelihoodFactor extends GaussianFactor
|
||||
public function __construct($betaSquared, Variable &$variable1, Variable &$variable2)
|
||||
{
|
||||
parent::__construct(sprintf("Likelihood of %s going to %s", $variable2, $variable1));
|
||||
$this->_precision = 1.0/$betaSquared;
|
||||
$this->_precision = 1.0 / $betaSquared;
|
||||
$this->createVariableToMessageBinding($variable1);
|
||||
$this->createVariableToMessageBinding($variable2);
|
||||
}
|
||||
@ -33,24 +28,24 @@ class GaussianLikelihoodFactor extends GaussianFactor
|
||||
$messages = &$this->getMessages();
|
||||
|
||||
return GaussianDistribution::logRatioNormalization(
|
||||
$vars[0]->getValue(),
|
||||
$messages[0]->getValue());
|
||||
$vars[0]->getValue(),
|
||||
$messages[0]->getValue());
|
||||
}
|
||||
|
||||
private function updateHelper(Message &$message1, Message &$message2,
|
||||
Variable &$variable1, Variable &$variable2)
|
||||
{
|
||||
{
|
||||
$message1Value = clone $message1->getValue();
|
||||
$message2Value = clone $message2->getValue();
|
||||
|
||||
$message2Value = clone $message2->getValue();
|
||||
|
||||
$marginal1 = clone $variable1->getValue();
|
||||
$marginal2 = clone $variable2->getValue();
|
||||
|
||||
$a = $this->_precision/($this->_precision + $marginal2->getPrecision() - $message2Value->getPrecision());
|
||||
$a = $this->_precision / ($this->_precision + $marginal2->getPrecision() - $message2Value->getPrecision());
|
||||
|
||||
$newMessage = GaussianDistribution::fromPrecisionMean(
|
||||
$a*($marginal2->getPrecisionMean() - $message2Value->getPrecisionMean()),
|
||||
$a*($marginal2->getPrecision() - $message2Value->getPrecision()));
|
||||
$a * ($marginal2->getPrecisionMean() - $message2Value->getPrecisionMean()),
|
||||
$a * ($marginal2->getPrecision() - $message2Value->getPrecision()));
|
||||
|
||||
$oldMarginalWithoutMessage = GaussianDistribution::divide($marginal1, $message1Value);
|
||||
|
||||
@ -68,20 +63,17 @@ class GaussianLikelihoodFactor extends GaussianFactor
|
||||
public function updateMessageIndex($messageIndex)
|
||||
{
|
||||
$messages = &$this->getMessages();
|
||||
$vars = &$this->getVariables();
|
||||
$vars = &$this->getVariables();
|
||||
|
||||
switch ($messageIndex)
|
||||
{
|
||||
switch ($messageIndex) {
|
||||
case 0:
|
||||
return $this->updateHelper($messages[0], $messages[1],
|
||||
$vars[0], $vars[1]);
|
||||
$vars[0], $vars[1]);
|
||||
case 1:
|
||||
return $this->updateHelper($messages[1], $messages[0],
|
||||
$vars[1], $vars[0]);
|
||||
$vars[1], $vars[0]);
|
||||
default:
|
||||
throw new Exception();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
?>
|
||||
}
|
@ -1,14 +1,8 @@
|
||||
<?php
|
||||
namespace Moserware\Skills\TrueSkill\Factors;
|
||||
<?php namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
|
||||
require_once(dirname(__FILE__) . "/GaussianFactor.php");
|
||||
|
||||
use Moserware\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\FactorGraphs\Message;
|
||||
use Moserware\Skills\FactorGraphs\Variable;
|
||||
use Moserware\Skills\Numerics\GaussianDistribution;
|
||||
|
||||
/**
|
||||
* Supplies the factor graph with prior information.
|
||||
@ -24,7 +18,7 @@ class GaussianPriorFactor extends GaussianFactor
|
||||
parent::__construct(sprintf("Prior value going to %s", $variable));
|
||||
$this->_newMessage = new GaussianDistribution($mean, sqrt($variance));
|
||||
$newMessage = new Message(GaussianDistribution::fromPrecisionMean(0, 0),
|
||||
sprintf("message from %s to %s", $this, $variable));
|
||||
sprintf("message from %s to %s", $this, $variable));
|
||||
|
||||
$this->createVariableToMessageBindingWithMessage($variable, $newMessage);
|
||||
}
|
||||
@ -43,6 +37,4 @@ class GaussianPriorFactor extends GaussianFactor
|
||||
$message->setValue($newMessage);
|
||||
return GaussianDistribution::subtract($oldMarginal, $newMarginal);
|
||||
}
|
||||
}
|
||||
|
||||
?>
|
||||
}
|
@ -1,21 +1,14 @@
|
||||
<?php
|
||||
namespace Moserware\Skills\TrueSkill\Factors;
|
||||
<?php namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
require_once(dirname(__FILE__) . "/../../Guard.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/BasicMath.php");
|
||||
require_once(dirname(__FILE__) . "/GaussianFactor.php");
|
||||
|
||||
use Moserware\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\Guard;
|
||||
use Moserware\Skills\FactorGraphs\Message;
|
||||
use Moserware\Skills\FactorGraphs\Variable;
|
||||
use Moserware\Skills\Numerics\BasicMatch;
|
||||
use Moserware\Skills\Numerics\GaussianDistribution;
|
||||
|
||||
/**
|
||||
* Factor that sums together multiple Gaussians.
|
||||
*
|
||||
*
|
||||
* See the accompanying math paper for more details.s
|
||||
*/
|
||||
class GaussianWeightedSumFactor extends GaussianFactor
|
||||
@ -37,20 +30,18 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
// v_0 = a_1*v_1 + a_2*v_2 + ... + a_n * v_n
|
||||
$variableWeightsLength = count($variableWeights);
|
||||
$this->_weights[0] = \array_fill(0, count($variableWeights), 0);
|
||||
|
||||
for($i = 0; $i < $variableWeightsLength; $i++)
|
||||
{
|
||||
|
||||
for ($i = 0; $i < $variableWeightsLength; $i++) {
|
||||
$weight = &$variableWeights[$i];
|
||||
$this->_weights[0][$i] = $weight;
|
||||
$this->_weightsSquared[0][$i] = square($weight);
|
||||
$this->_weightsSquared[0][$i] = BasicMatch::square($weight);
|
||||
}
|
||||
|
||||
$variablesToSumLength = count($variablesToSum);
|
||||
|
||||
// 0..n-1
|
||||
$this->_variableIndexOrdersForWeights[0] = array();
|
||||
for($i = 0; $i < ($variablesToSumLength + 1); $i++)
|
||||
{
|
||||
for ($i = 0; $i < ($variablesToSumLength + 1); $i++) {
|
||||
$this->_variableIndexOrdersForWeights[0][] = $i;
|
||||
}
|
||||
|
||||
@ -62,10 +53,9 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
// By convention, we'll put the v_0 term at the end
|
||||
|
||||
$weightsLength = $variableWeightsLength + 1;
|
||||
for ($weightsIndex = 1; $weightsIndex < $weightsLength; $weightsIndex++)
|
||||
{
|
||||
for ($weightsIndex = 1; $weightsIndex < $weightsLength; $weightsIndex++) {
|
||||
$currentWeights = \array_fill(0, $variableWeightsLength, 0);
|
||||
|
||||
|
||||
$variableIndices = \array_fill(0, $variableWeightsLength + 1, 0);
|
||||
$variableIndices[0] = $weightsIndex;
|
||||
|
||||
@ -73,42 +63,38 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
|
||||
// keep a single variable to keep track of where we are in the array.
|
||||
// This is helpful since we skip over one of the spots
|
||||
$currentDestinationWeightIndex = 0;
|
||||
$currentDestinationWeightIndex = 0;
|
||||
|
||||
for ($currentWeightSourceIndex = 0;
|
||||
$currentWeightSourceIndex < $variableWeightsLength;
|
||||
$currentWeightSourceIndex++)
|
||||
{
|
||||
if ($currentWeightSourceIndex == ($weightsIndex - 1))
|
||||
{
|
||||
$currentWeightSourceIndex++) {
|
||||
if ($currentWeightSourceIndex == ($weightsIndex - 1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
$currentWeight = (-$variableWeights[$currentWeightSourceIndex]/$variableWeights[$weightsIndex - 1]);
|
||||
$currentWeight = (-$variableWeights[$currentWeightSourceIndex] / $variableWeights[$weightsIndex - 1]);
|
||||
|
||||
if ($variableWeights[$weightsIndex - 1] == 0)
|
||||
{
|
||||
if ($variableWeights[$weightsIndex - 1] == 0) {
|
||||
// HACK: Getting around division by zero
|
||||
$currentWeight = 0;
|
||||
}
|
||||
|
||||
$currentWeights[$currentDestinationWeightIndex] = $currentWeight;
|
||||
$currentWeightsSquared[$currentDestinationWeightIndex] = $currentWeight*$currentWeight;
|
||||
$currentWeightsSquared[$currentDestinationWeightIndex] = $currentWeight * $currentWeight;
|
||||
|
||||
$variableIndices[$currentDestinationWeightIndex + 1] = $currentWeightSourceIndex + 1;
|
||||
$currentDestinationWeightIndex++;
|
||||
}
|
||||
|
||||
// And the final one
|
||||
$finalWeight = 1.0/$variableWeights[$weightsIndex - 1];
|
||||
$finalWeight = 1.0 / $variableWeights[$weightsIndex - 1];
|
||||
|
||||
if ($variableWeights[$weightsIndex - 1] == 0)
|
||||
{
|
||||
if ($variableWeights[$weightsIndex - 1] == 0) {
|
||||
// HACK: Getting around division by zero
|
||||
$finalWeight = 0;
|
||||
}
|
||||
$currentWeights[$currentDestinationWeightIndex] = $finalWeight;
|
||||
$currentWeightsSquared[$currentDestinationWeightIndex] = square($finalWeight);
|
||||
$currentWeightsSquared[$currentDestinationWeightIndex] = BasicMatch::square($finalWeight);
|
||||
$variableIndices[count($variableWeights)] = 0;
|
||||
$this->_variableIndexOrdersForWeights[] = $variableIndices;
|
||||
|
||||
@ -118,11 +104,10 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
|
||||
$this->createVariableToMessageBinding($sumVariable);
|
||||
|
||||
foreach ($variablesToSum as &$currentVariable)
|
||||
{
|
||||
foreach ($variablesToSum as &$currentVariable) {
|
||||
$localCurrentVariable = &$currentVariable;
|
||||
$this->createVariableToMessageBinding($localCurrentVariable);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public function getLogNormalization()
|
||||
@ -134,8 +119,7 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
|
||||
// We start at 1 since offset 0 has the sum
|
||||
$varCount = count($vars);
|
||||
for ($i = 1; $i < $varCount; $i++)
|
||||
{
|
||||
for ($i = 1; $i < $varCount; $i++) {
|
||||
$result += GaussianDistribution::logRatioNormalization($vars[$i]->getValue(), $messages[$i]->getValue());
|
||||
}
|
||||
|
||||
@ -160,30 +144,29 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
|
||||
$weightsSquaredLength = count($weightsSquared);
|
||||
|
||||
for ($i = 0; $i < $weightsSquaredLength; $i++)
|
||||
{
|
||||
for ($i = 0; $i < $weightsSquaredLength; $i++) {
|
||||
// These flow directly from the paper
|
||||
|
||||
$inverseOfNewPrecisionSum += $weightsSquared[$i]/
|
||||
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
|
||||
$inverseOfNewPrecisionSum += $weightsSquared[$i] /
|
||||
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
|
||||
|
||||
$diff = GaussianDistribution::divide($variables[$i + 1]->getValue(), $messages[$i + 1]->getValue());
|
||||
$anotherInverseOfNewPrecisionSum += $weightsSquared[$i]/$diff->getPrecision();
|
||||
$anotherInverseOfNewPrecisionSum += $weightsSquared[$i] / $diff->getPrecision();
|
||||
|
||||
$weightedMeanSum += $weights[$i]
|
||||
*
|
||||
($variables[$i + 1]->getValue()->getPrecisionMean() - $messages[$i + 1]->getValue()->getPrecisionMean())
|
||||
/
|
||||
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
|
||||
*
|
||||
($variables[$i + 1]->getValue()->getPrecisionMean() - $messages[$i + 1]->getValue()->getPrecisionMean())
|
||||
/
|
||||
($variables[$i + 1]->getValue()->getPrecision() - $messages[$i + 1]->getValue()->getPrecision());
|
||||
|
||||
$anotherWeightedMeanSum += $weights[$i]*$diff->getPrecisionMean()/$diff->getPrecision();
|
||||
$anotherWeightedMeanSum += $weights[$i] * $diff->getPrecisionMean() / $diff->getPrecision();
|
||||
}
|
||||
|
||||
$newPrecision = 1.0/$inverseOfNewPrecisionSum;
|
||||
$anotherNewPrecision = 1.0/$anotherInverseOfNewPrecisionSum;
|
||||
$newPrecision = 1.0 / $inverseOfNewPrecisionSum;
|
||||
$anotherNewPrecision = 1.0 / $anotherInverseOfNewPrecisionSum;
|
||||
|
||||
$newPrecisionMean = $newPrecision*$weightedMeanSum;
|
||||
$anotherNewPrecisionMean = $anotherNewPrecision*$anotherWeightedMeanSum;
|
||||
$newPrecisionMean = $newPrecision * $weightedMeanSum;
|
||||
$anotherNewPrecisionMean = $anotherNewPrecision * $anotherWeightedMeanSum;
|
||||
|
||||
$newMessage = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
|
||||
$oldMarginalWithoutMessage = GaussianDistribution::divide($marginal0, $message0);
|
||||
@ -201,7 +184,7 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
}
|
||||
|
||||
public function updateMessageIndex($messageIndex)
|
||||
{
|
||||
{
|
||||
$allMessages = &$this->getMessages();
|
||||
$allVariables = &$this->getVariables();
|
||||
|
||||
@ -216,16 +199,15 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
// order as the weights. Thankfully, the weights and messages share the same index numbers,
|
||||
// so we just need to make sure they're consistent
|
||||
$allMessagesCount = count($allMessages);
|
||||
for ($i = 0; $i < $allMessagesCount; $i++)
|
||||
{
|
||||
for ($i = 0; $i < $allMessagesCount; $i++) {
|
||||
$updatedMessages[] = &$allMessages[$indicesToUse[$i]];
|
||||
$updatedVariables[] = &$allVariables[$indicesToUse[$i]];
|
||||
}
|
||||
|
||||
|
||||
return $this->updateHelper($this->_weights[$messageIndex],
|
||||
$this->_weightsSquared[$messageIndex],
|
||||
$updatedMessages,
|
||||
$updatedVariables);
|
||||
$this->_weightsSquared[$messageIndex],
|
||||
$updatedMessages,
|
||||
$updatedVariables);
|
||||
}
|
||||
|
||||
private static function createName($sumVariable, $variablesToSum, $weights)
|
||||
@ -233,14 +215,12 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
// TODO: Perf? Use PHP equivalent of StringBuilder? implode on arrays?
|
||||
$result = (string)$sumVariable;
|
||||
$result .= ' = ';
|
||||
|
||||
|
||||
$totalVars = count($variablesToSum);
|
||||
for($i = 0; $i < $totalVars; $i++)
|
||||
{
|
||||
for ($i = 0; $i < $totalVars; $i++) {
|
||||
$isFirst = ($i == 0);
|
||||
|
||||
if($isFirst && ($weights[$i] < 0))
|
||||
{
|
||||
|
||||
if ($isFirst && ($weights[$i] < 0)) {
|
||||
$result .= '-';
|
||||
}
|
||||
|
||||
@ -249,24 +229,18 @@ class GaussianWeightedSumFactor extends GaussianFactor
|
||||
$result .= "*[";
|
||||
$result .= (string)$variablesToSum[$i];
|
||||
$result .= ']';
|
||||
|
||||
|
||||
$isLast = ($i == ($totalVars - 1));
|
||||
|
||||
if(!$isLast)
|
||||
{
|
||||
if($weights[$i + 1] >= 0)
|
||||
{
|
||||
|
||||
if (!$isLast) {
|
||||
if ($weights[$i + 1] >= 0) {
|
||||
$result .= ' + ';
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
$result .= ' - ';
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return $result;
|
||||
}
|
||||
}
|
||||
|
||||
?>
|
||||
}
|
@ -1,13 +1,6 @@
|
||||
<?php
|
||||
namespace Moserware\Skills\TrueSkill\Factors;
|
||||
<?php namespace Moserware\Skills\TrueSkill\Factors;
|
||||
|
||||
require_once(dirname(__FILE__) . "/../TruncatedGaussianCorrectionFunctions.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Message.php");
|
||||
require_once(dirname(__FILE__) . "/../../FactorGraphs/Variable.php");
|
||||
require_once(dirname(__FILE__) . "/../../Numerics/GaussianDistribution.php");
|
||||
require_once(dirname(__FILE__) . "/GaussianFactor.php");
|
||||
|
||||
use Moserware\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\Numerics\GaussianDistribution;
|
||||
use Moserware\Skills\TrueSkill\TruncatedGaussianCorrectionFunctions;
|
||||
use Moserware\Skills\FactorGraphs\Message;
|
||||
use Moserware\Skills\FactorGraphs\Variable;
|
||||
@ -38,9 +31,9 @@ class GaussianWithinFactor extends GaussianFactor
|
||||
$messageFromVariable = GaussianDistribution::divide($marginal, $message);
|
||||
$mean = $messageFromVariable->getMean();
|
||||
$std = $messageFromVariable->getStandardDeviation();
|
||||
$z = GaussianDistribution::cumulativeTo(($this->_epsilon - $mean)/$std)
|
||||
-
|
||||
GaussianDistribution::cumulativeTo((-$this->_epsilon - $mean)/$std);
|
||||
$z = GaussianDistribution::cumulativeTo(($this->_epsilon - $mean) / $std)
|
||||
-
|
||||
GaussianDistribution::cumulativeTo((-$this->_epsilon - $mean) / $std);
|
||||
|
||||
return -GaussianDistribution::logProductNormalization($messageFromVariable, $message) + log($z);
|
||||
}
|
||||
@ -55,22 +48,22 @@ class GaussianWithinFactor extends GaussianFactor
|
||||
$d = $messageFromVariable->getPrecisionMean();
|
||||
|
||||
$sqrtC = sqrt($c);
|
||||
$dOnSqrtC = $d/$sqrtC;
|
||||
$dOnSqrtC = $d / $sqrtC;
|
||||
|
||||
$epsilonTimesSqrtC = $this->_epsilon*$sqrtC;
|
||||
$epsilonTimesSqrtC = $this->_epsilon * $sqrtC;
|
||||
$d = $messageFromVariable->getPrecisionMean();
|
||||
|
||||
$denominator = 1.0 - TruncatedGaussianCorrectionFunctions::wWithinMargin($dOnSqrtC, $epsilonTimesSqrtC);
|
||||
$newPrecision = $c/$denominator;
|
||||
$newPrecision = $c / $denominator;
|
||||
$newPrecisionMean = ($d +
|
||||
$sqrtC*
|
||||
TruncatedGaussianCorrectionFunctions::vWithinMargin($dOnSqrtC, $epsilonTimesSqrtC))/
|
||||
$denominator;
|
||||
$sqrtC *
|
||||
TruncatedGaussianCorrectionFunctions::vWithinMargin($dOnSqrtC, $epsilonTimesSqrtC)) /
|
||||
$denominator;
|
||||
|
||||
$newMarginal = GaussianDistribution::fromPrecisionMean($newPrecisionMean, $newPrecision);
|
||||
$newMessage = GaussianDistribution::divide(
|
||||
GaussianDistribution::multiply($oldMessage, $newMarginal),
|
||||
$oldMarginal);
|
||||
GaussianDistribution::multiply($oldMessage, $newMarginal),
|
||||
$oldMarginal);
|
||||
|
||||
// Update the message and marginal
|
||||
$message->setValue($newMessage);
|
||||
@ -79,6 +72,4 @@ class GaussianWithinFactor extends GaussianFactor
|
||||
// Return the difference in the new marginal
|
||||
return GaussianDistribution::subtract($newMarginal, $oldMarginal);
|
||||
}
|
||||
}
|
||||
|
||||
?>
|
||||
}
|
Reference in New Issue
Block a user