mirror of
				https://github.com/furyfire/trueskill.git
				synced 2025-11-04 02:02:29 +01:00 
			
		
		
		
	Moved UnitTests to tests/ and Skills to src/
This commit is contained in:
		
							
								
								
									
										106
									
								
								tests/Numerics/GaussianDistributionTest.php
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								tests/Numerics/GaussianDistributionTest.php
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,106 @@
 | 
			
		||||
<?php
 | 
			
		||||
namespace Moserware\Numerics;
 | 
			
		||||
 | 
			
		||||
require_once 'PHPUnit/Framework.php';
 | 
			
		||||
require_once 'PHPUnit/TextUI/TestRunner.php';
 | 
			
		||||
 | 
			
		||||
require_once(dirname(__FILE__) . '/../../Skills/Numerics/GaussianDistribution.php');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
use \PHPUnit_Framework_TestCase;
 | 
			
		||||
 
 | 
			
		||||
class GaussianDistributionTest extends PHPUnit_Framework_TestCase
 | 
			
		||||
{    
 | 
			
		||||
    const ERROR_TOLERANCE = 0.000001;
 | 
			
		||||
    
 | 
			
		||||
    public function testCumulativeTo()
 | 
			
		||||
    {    
 | 
			
		||||
        // Verified with WolframAlpha
 | 
			
		||||
        // (e.g. http://www.wolframalpha.com/input/?i=CDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
 | 
			
		||||
        $this->assertEquals( 0.691462, GaussianDistribution::cumulativeTo(0.5),'', GaussianDistributionTest::ERROR_TOLERANCE);            
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    public function testAt()
 | 
			
		||||
    {
 | 
			
		||||
        // Verified with WolframAlpha
 | 
			
		||||
        // (e.g. http://www.wolframalpha.com/input/?i=PDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
 | 
			
		||||
        $this->assertEquals(0.352065, GaussianDistribution::at(0.5), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    public function testMultiplication()
 | 
			
		||||
    {
 | 
			
		||||
        // I verified this against the formula at http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
 | 
			
		||||
        $standardNormal = new GaussianDistribution(0, 1);        
 | 
			
		||||
        $shiftedGaussian = new GaussianDistribution(2, 3);
 | 
			
		||||
        $product = GaussianDistribution::multiply($standardNormal, $shiftedGaussian);
 | 
			
		||||
        
 | 
			
		||||
        $this->assertEquals(0.2, $product->getMean(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
        $this->assertEquals(3.0 / sqrt(10), $product->getStandardDeviation(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
 | 
			
		||||
        $m4s5 = new GaussianDistribution(4, 5);
 | 
			
		||||
        $m6s7 = new GaussianDistribution(6, 7);
 | 
			
		||||
 | 
			
		||||
        $product2 = GaussianDistribution::multiply($m4s5, $m6s7);
 | 
			
		||||
        
 | 
			
		||||
        $expectedMean = (4 * square(7) + 6 * square(5)) / (square(5) + square(7));
 | 
			
		||||
        $this->assertEquals($expectedMean, $product2->getMean(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
 | 
			
		||||
        $expectedSigma = sqrt(((square(5) * square(7)) / (square(5) + square(7))));
 | 
			
		||||
        $this->assertEquals($expectedSigma, $product2->getStandardDeviation(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    public function testDivision()
 | 
			
		||||
    {
 | 
			
		||||
        // Since the multiplication was worked out by hand, we use the same numbers but work backwards
 | 
			
		||||
        $product = new GaussianDistribution(0.2, 3.0 / sqrt(10));
 | 
			
		||||
        $standardNormal = new GaussianDistribution(0, 1);
 | 
			
		||||
 | 
			
		||||
        $productDividedByStandardNormal = GaussianDistribution::divide($product, $standardNormal);
 | 
			
		||||
        $this->assertEquals(2.0, $productDividedByStandardNormal->getMean(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
        $this->assertEquals(3.0, $productDividedByStandardNormal->getStandardDeviation(),'', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
        
 | 
			
		||||
        $product2 = new GaussianDistribution((4 * square(7) + 6 * square(5)) / (square(5) + square(7)), sqrt(((square(5) * square(7)) / (square(5) + square(7)))));
 | 
			
		||||
        $m4s5 = new GaussianDistribution(4,5);
 | 
			
		||||
        $product2DividedByM4S5 = GaussianDistribution::divide($product2, $m4s5);
 | 
			
		||||
        $this->assertEquals(6.0, $product2DividedByM4S5->getMean(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
        $this->assertEquals(7.0, $product2DividedByM4S5->getStandardDeviation(), '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    public function testLogProductNormalization()
 | 
			
		||||
    {
 | 
			
		||||
        // Verified with Ralf Herbrich's F# implementation
 | 
			
		||||
        $standardNormal = new GaussianDistribution(0, 1);
 | 
			
		||||
        $lpn = GaussianDistribution::logProductNormalization($standardNormal, $standardNormal);
 | 
			
		||||
        $this->assertEquals(-1.2655121234846454, $lpn, '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
 | 
			
		||||
        $m1s2 = new GaussianDistribution(1, 2);
 | 
			
		||||
        $m3s4 = new GaussianDistribution(3, 4);
 | 
			
		||||
        $lpn2 = GaussianDistribution::logProductNormalization($m1s2, $m3s4);
 | 
			
		||||
        $this->assertEquals(-2.5168046699816684, $lpn2, '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    public function testLogRatioNormalization()
 | 
			
		||||
    {
 | 
			
		||||
        // Verified with Ralf Herbrich's F# implementation            
 | 
			
		||||
        $m1s2 = new GaussianDistribution(1, 2);
 | 
			
		||||
        $m3s4 = new GaussianDistribution(3, 4);
 | 
			
		||||
        $lrn = GaussianDistribution::logRatioNormalization($m1s2, $m3s4);
 | 
			
		||||
        $this->assertEquals(2.6157405972171204, $lrn, '', GaussianDistributionTest::ERROR_TOLERANCE);            
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    public function testAbsoluteDifference()
 | 
			
		||||
    {
 | 
			
		||||
        // Verified with Ralf Herbrich's F# implementation            
 | 
			
		||||
        $standardNormal = new GaussianDistribution(0, 1);
 | 
			
		||||
        $absDiff = GaussianDistribution::absoluteDifference($standardNormal, $standardNormal);
 | 
			
		||||
        $this->assertEquals(0.0, $absDiff, '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
 | 
			
		||||
        $m1s2 = new GaussianDistribution(1, 2);
 | 
			
		||||
        $m3s4 = new GaussianDistribution(3, 4);
 | 
			
		||||
        $absDiff2 = GaussianDistribution::absoluteDifference($m1s2, $m3s4);
 | 
			
		||||
        $this->assertEquals(0.4330127018922193, $absDiff2, '', GaussianDistributionTest::ERROR_TOLERANCE);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
?>
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user