mirror of
https://github.com/furyfire/trueskill.git
synced 2025-04-19 04:14:28 +00:00
Moved UnitTests to tests/ and Skills to src/
This commit is contained in:
31
src/Numerics/BasicMath.php
Normal file
31
src/Numerics/BasicMath.php
Normal file
@ -0,0 +1,31 @@
|
||||
<?php
|
||||
/**
|
||||
* Basic math functions.
|
||||
*
|
||||
* @author Jeff Moser <jeff@moserware.com>
|
||||
* @copyright 2010 Jeff Moser
|
||||
*/
|
||||
|
||||
/**
|
||||
* Squares the input (x^2 = x * x)
|
||||
* @param number $x Value to square (x)
|
||||
* @return number The squared value (x^2)
|
||||
*/
|
||||
function square($x)
|
||||
{
|
||||
return $x * $x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sums the items in $itemsToSum
|
||||
* @param array $itemsToSum The items to sum,
|
||||
* @param callback $callback The function to apply to each array element before summing.
|
||||
* @return number The sum.
|
||||
*/
|
||||
function sum(array $itemsToSum, $callback )
|
||||
{
|
||||
$mappedItems = array_map($callback, $itemsToSum);
|
||||
return array_sum($mappedItems);
|
||||
}
|
||||
|
||||
?>
|
280
src/Numerics/GaussianDistribution.php
Normal file
280
src/Numerics/GaussianDistribution.php
Normal file
@ -0,0 +1,280 @@
|
||||
<?php
|
||||
|
||||
namespace Moserware\Numerics;
|
||||
|
||||
require_once(dirname(__FILE__) . "/basicmath.php");
|
||||
|
||||
/**
|
||||
* Computes Gaussian (bell curve) values.
|
||||
*
|
||||
* @author Jeff Moser <jeff@moserware.com>
|
||||
* @copyright 2010 Jeff Moser
|
||||
*/
|
||||
class GaussianDistribution
|
||||
{
|
||||
private $_mean;
|
||||
private $_standardDeviation;
|
||||
|
||||
// precision and precisionMean are used because they make multiplying and dividing simpler
|
||||
// (the the accompanying math paper for more details)
|
||||
private $_precision;
|
||||
private $_precisionMean;
|
||||
private $_variance;
|
||||
|
||||
function __construct($mean = 0.0, $standardDeviation = 1.0)
|
||||
{
|
||||
$this->_mean = $mean;
|
||||
$this->_standardDeviation = $standardDeviation;
|
||||
$this->_variance = square($standardDeviation);
|
||||
|
||||
if($this->_variance != 0)
|
||||
{
|
||||
$this->_precision = 1.0/$this->_variance;
|
||||
$this->_precisionMean = $this->_precision*$this->_mean;
|
||||
}
|
||||
else
|
||||
{
|
||||
$this->_precision = \INF;
|
||||
|
||||
if($this->_mean == 0)
|
||||
{
|
||||
$this->_precisionMean = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
$this->_precisionMean = \INF;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public function getMean()
|
||||
{
|
||||
return $this->_mean;
|
||||
}
|
||||
|
||||
public function getVariance()
|
||||
{
|
||||
return $this->_variance;
|
||||
}
|
||||
|
||||
public function getStandardDeviation()
|
||||
{
|
||||
return $this->_standardDeviation;
|
||||
}
|
||||
|
||||
public function getPrecision()
|
||||
{
|
||||
return $this->_precision;
|
||||
}
|
||||
|
||||
public function getPrecisionMean()
|
||||
{
|
||||
return $this->_precisionMean;
|
||||
}
|
||||
|
||||
public function getNormalizationConstant()
|
||||
{
|
||||
// Great derivation of this is at http://www.astro.psu.edu/~mce/A451_2/A451/downloads/notes0.pdf
|
||||
return 1.0/(sqrt(2*M_PI)*$this->_standardDeviation);
|
||||
}
|
||||
|
||||
public function __clone()
|
||||
{
|
||||
$result = new GaussianDistribution();
|
||||
$result->_mean = $this->_mean;
|
||||
$result->_standardDeviation = $this->_standardDeviation;
|
||||
$result->_variance = $this->_variance;
|
||||
$result->_precision = $this->_precision;
|
||||
$result->_precisionMean = $this->_precisionMean;
|
||||
return $result;
|
||||
}
|
||||
|
||||
public static function fromPrecisionMean($precisionMean, $precision)
|
||||
{
|
||||
$result = new GaussianDistribution();
|
||||
$result->_precision = $precision;
|
||||
$result->_precisionMean = $precisionMean;
|
||||
|
||||
if($precision != 0)
|
||||
{
|
||||
$result->_variance = 1.0/$precision;
|
||||
$result->_standardDeviation = sqrt($result->_variance);
|
||||
$result->_mean = $result->_precisionMean/$result->_precision;
|
||||
}
|
||||
else
|
||||
{
|
||||
$result->_variance = \INF;
|
||||
$result->_standardDeviation = \INF;
|
||||
$result->_mean = \NAN;
|
||||
}
|
||||
return $result;
|
||||
}
|
||||
|
||||
// For details, see http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
|
||||
// for multiplication, the precision mean ones are easier to write :)
|
||||
public static function multiply(GaussianDistribution $left, GaussianDistribution $right)
|
||||
{
|
||||
return GaussianDistribution::fromPrecisionMean($left->_precisionMean + $right->_precisionMean, $left->_precision + $right->_precision);
|
||||
}
|
||||
|
||||
// Computes the absolute difference between two Gaussians
|
||||
public static function absoluteDifference(GaussianDistribution $left, GaussianDistribution $right)
|
||||
{
|
||||
return max(
|
||||
abs($left->_precisionMean - $right->_precisionMean),
|
||||
sqrt(abs($left->_precision - $right->_precision)));
|
||||
}
|
||||
|
||||
// Computes the absolute difference between two Gaussians
|
||||
public static function subtract(GaussianDistribution $left, GaussianDistribution $right)
|
||||
{
|
||||
return GaussianDistribution::absoluteDifference($left, $right);
|
||||
}
|
||||
|
||||
public static function logProductNormalization(GaussianDistribution $left, GaussianDistribution $right)
|
||||
{
|
||||
if (($left->_precision == 0) || ($right->_precision == 0))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
$varianceSum = $left->_variance + $right->_variance;
|
||||
$meanDifference = $left->_mean - $right->_mean;
|
||||
|
||||
$logSqrt2Pi = log(sqrt(2*M_PI));
|
||||
return -$logSqrt2Pi - (log($varianceSum)/2.0) - (square($meanDifference)/(2.0*$varianceSum));
|
||||
}
|
||||
|
||||
public static function divide(GaussianDistribution $numerator, GaussianDistribution $denominator)
|
||||
{
|
||||
return GaussianDistribution::fromPrecisionMean($numerator->_precisionMean - $denominator->_precisionMean,
|
||||
$numerator->_precision - $denominator->_precision);
|
||||
}
|
||||
|
||||
public static function logRatioNormalization(GaussianDistribution $numerator, GaussianDistribution $denominator)
|
||||
{
|
||||
if (($numerator->_precision == 0) || ($denominator->_precision == 0))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
$varianceDifference = $denominator->_variance - $numerator->_variance;
|
||||
$meanDifference = $numerator->_mean - $denominator->_mean;
|
||||
|
||||
$logSqrt2Pi = log(sqrt(2*M_PI));
|
||||
|
||||
return log($denominator->_variance) + $logSqrt2Pi - log($varianceDifference)/2.0 +
|
||||
square($meanDifference)/(2*$varianceDifference);
|
||||
}
|
||||
|
||||
public static function at($x, $mean = 0.0, $standardDeviation = 1.0)
|
||||
{
|
||||
// See http://mathworld.wolfram.com/NormalDistribution.html
|
||||
// 1 -(x-mean)^2 / (2*stdDev^2)
|
||||
// P(x) = ------------------- * e
|
||||
// stdDev * sqrt(2*pi)
|
||||
|
||||
$multiplier = 1.0/($standardDeviation*sqrt(2*M_PI));
|
||||
$expPart = exp((-1.0*square($x - $mean))/(2*square($standardDeviation)));
|
||||
$result = $multiplier*$expPart;
|
||||
return $result;
|
||||
}
|
||||
|
||||
public static function cumulativeTo($x, $mean = 0.0, $standardDeviation = 1.0)
|
||||
{
|
||||
$invsqrt2 = -0.707106781186547524400844362104;
|
||||
$result = GaussianDistribution::errorFunctionCumulativeTo($invsqrt2*$x);
|
||||
return 0.5*$result;
|
||||
}
|
||||
|
||||
private static function errorFunctionCumulativeTo($x)
|
||||
{
|
||||
// Derived from page 265 of Numerical Recipes 3rd Edition
|
||||
$z = abs($x);
|
||||
|
||||
$t = 2.0/(2.0 + $z);
|
||||
$ty = 4*$t - 2;
|
||||
|
||||
$coefficients = array(
|
||||
-1.3026537197817094,
|
||||
6.4196979235649026e-1,
|
||||
1.9476473204185836e-2,
|
||||
-9.561514786808631e-3,
|
||||
-9.46595344482036e-4,
|
||||
3.66839497852761e-4,
|
||||
4.2523324806907e-5,
|
||||
-2.0278578112534e-5,
|
||||
-1.624290004647e-6,
|
||||
1.303655835580e-6,
|
||||
1.5626441722e-8,
|
||||
-8.5238095915e-8,
|
||||
6.529054439e-9,
|
||||
5.059343495e-9,
|
||||
-9.91364156e-10,
|
||||
-2.27365122e-10,
|
||||
9.6467911e-11,
|
||||
2.394038e-12,
|
||||
-6.886027e-12,
|
||||
8.94487e-13,
|
||||
3.13092e-13,
|
||||
-1.12708e-13,
|
||||
3.81e-16,
|
||||
7.106e-15,
|
||||
-1.523e-15,
|
||||
-9.4e-17,
|
||||
1.21e-16,
|
||||
-2.8e-17 );
|
||||
|
||||
$ncof = count($coefficients);
|
||||
$d = 0.0;
|
||||
$dd = 0.0;
|
||||
|
||||
for ($j = $ncof - 1; $j > 0; $j--)
|
||||
{
|
||||
$tmp = $d;
|
||||
$d = $ty*$d - $dd + $coefficients[$j];
|
||||
$dd = $tmp;
|
||||
}
|
||||
|
||||
$ans = $t*exp(-$z*$z + 0.5*($coefficients[0] + $ty*$d) - $dd);
|
||||
return ($x >= 0.0) ? $ans : (2.0 - $ans);
|
||||
}
|
||||
|
||||
private static function inverseErrorFunctionCumulativeTo($p)
|
||||
{
|
||||
// From page 265 of numerical recipes
|
||||
|
||||
if ($p >= 2.0)
|
||||
{
|
||||
return -100;
|
||||
}
|
||||
if ($p <= 0.0)
|
||||
{
|
||||
return 100;
|
||||
}
|
||||
|
||||
$pp = ($p < 1.0) ? $p : 2 - $p;
|
||||
$t = sqrt(-2*log($pp/2.0)); // Initial guess
|
||||
$x = -0.70711*((2.30753 + $t*0.27061)/(1.0 + $t*(0.99229 + $t*0.04481)) - $t);
|
||||
|
||||
for ($j = 0; $j < 2; $j++)
|
||||
{
|
||||
$err = GaussianDistribution::errorFunctionCumulativeTo($x) - $pp;
|
||||
$x += $err/(1.12837916709551257*exp(-square($x)) - $x*$err); // Halley
|
||||
}
|
||||
|
||||
return ($p < 1.0) ? $x : -$x;
|
||||
}
|
||||
|
||||
public static function inverseCumulativeTo($x, $mean = 0.0, $standardDeviation = 1.0)
|
||||
{
|
||||
// From numerical recipes, page 320
|
||||
return $mean - sqrt(2)*$standardDeviation*GaussianDistribution::inverseErrorFunctionCumulativeTo(2*$x);
|
||||
}
|
||||
|
||||
public function __toString()
|
||||
{
|
||||
return sprintf("mean=%.4f standardDeviation=%.4f", $this->_mean, $this->_standardDeviation);
|
||||
}
|
||||
}
|
||||
?>
|
444
src/Numerics/Matrix.php
Normal file
444
src/Numerics/Matrix.php
Normal file
@ -0,0 +1,444 @@
|
||||
<?php
|
||||
namespace Moserware\Numerics;
|
||||
|
||||
class Matrix
|
||||
{
|
||||
const ERROR_TOLERANCE = 0.0000000001;
|
||||
|
||||
private $_matrixRowData;
|
||||
private $_rowCount;
|
||||
private $_columnCount;
|
||||
|
||||
public function __construct($rows = 0, $columns = 0, $matrixData = null)
|
||||
{
|
||||
$this->_rowCount = $rows;
|
||||
$this->_columnCount = $columns;
|
||||
$this->_matrixRowData = $matrixData;
|
||||
}
|
||||
|
||||
public static function fromColumnValues($rows, $columns, $columnValues)
|
||||
{
|
||||
$data = array();
|
||||
$result = new Matrix($rows, $columns, $data);
|
||||
|
||||
for($currentColumn = 0; $currentColumn < $columns; $currentColumn++)
|
||||
{
|
||||
$currentColumnData = $columnValues[$currentColumn];
|
||||
|
||||
for($currentRow = 0; $currentRow < $rows; $currentRow++)
|
||||
{
|
||||
$result->setValue($currentRow, $currentColumn, $currentColumnData[$currentRow]);
|
||||
}
|
||||
}
|
||||
|
||||
return $result;
|
||||
}
|
||||
|
||||
public static function fromRowsColumns()
|
||||
{
|
||||
$args = \func_get_args();
|
||||
$rows = $args[0];
|
||||
$cols = $args[1];
|
||||
$result = new Matrix($rows, $cols);
|
||||
$currentIndex = 2;
|
||||
|
||||
for($currentRow = 0; $currentRow < $rows; $currentRow++)
|
||||
{
|
||||
for($currentCol = 0; $currentCol < $cols; $currentCol++)
|
||||
{
|
||||
$result->setValue($currentRow, $currentCol, $args[$currentIndex++]);
|
||||
}
|
||||
}
|
||||
|
||||
return $result;
|
||||
}
|
||||
|
||||
public function getRowCount()
|
||||
{
|
||||
return $this->_rowCount;
|
||||
}
|
||||
|
||||
public function getColumnCount()
|
||||
{
|
||||
return $this->_columnCount;
|
||||
}
|
||||
|
||||
public function getValue($row, $col)
|
||||
{
|
||||
return $this->_matrixRowData[$row][$col];
|
||||
}
|
||||
|
||||
public function setValue($row, $col, $value)
|
||||
{
|
||||
$this->_matrixRowData[$row][$col] = $value;
|
||||
}
|
||||
|
||||
public function getTranspose()
|
||||
{
|
||||
// Just flip everything
|
||||
$transposeMatrix = array();
|
||||
|
||||
$rowMatrixData = $this->_matrixRowData;
|
||||
for ($currentRowTransposeMatrix = 0;
|
||||
$currentRowTransposeMatrix < $this->_columnCount;
|
||||
$currentRowTransposeMatrix++)
|
||||
{
|
||||
for ($currentColumnTransposeMatrix = 0;
|
||||
$currentColumnTransposeMatrix < $this->_rowCount;
|
||||
$currentColumnTransposeMatrix++)
|
||||
{
|
||||
$transposeMatrix[$currentRowTransposeMatrix][$currentColumnTransposeMatrix] =
|
||||
$rowMatrixData[$currentColumnTransposeMatrix][$currentRowTransposeMatrix];
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($this->_columnCount, $this->_rowCount, $transposeMatrix);
|
||||
}
|
||||
|
||||
private function isSquare()
|
||||
{
|
||||
return ($this->_rowCount == $this->_columnCount) && ($this->_rowCount > 0);
|
||||
}
|
||||
|
||||
public function getDeterminant()
|
||||
{
|
||||
// Basic argument checking
|
||||
if (!$this->isSquare())
|
||||
{
|
||||
throw new Exception("Matrix must be square!");
|
||||
}
|
||||
|
||||
if ($this->_rowCount == 1)
|
||||
{
|
||||
// Really happy path :)
|
||||
return $this->_matrixRowData[0][0];
|
||||
}
|
||||
|
||||
if ($this->_rowCount == 2)
|
||||
{
|
||||
// Happy path!
|
||||
// Given:
|
||||
// | a b |
|
||||
// | c d |
|
||||
// The determinant is ad - bc
|
||||
$a = $this->_matrixRowData[0][0];
|
||||
$b = $this->_matrixRowData[0][1];
|
||||
$c = $this->_matrixRowData[1][0];
|
||||
$d = $this->_matrixRowData[1][1];
|
||||
return $a*$d - $b*$c;
|
||||
}
|
||||
|
||||
// I use the Laplace expansion here since it's straightforward to implement.
|
||||
// It's O(n^2) and my implementation is especially poor performing, but the
|
||||
// core idea is there. Perhaps I should replace it with a better algorithm
|
||||
// later.
|
||||
// See http://en.wikipedia.org/wiki/Laplace_expansion for details
|
||||
|
||||
$result = 0.0;
|
||||
|
||||
// I expand along the first row
|
||||
for ($currentColumn = 0; $currentColumn < $this->_columnCount; $currentColumn++)
|
||||
{
|
||||
$firstRowColValue = $this->_matrixRowData[0][$currentColumn];
|
||||
$cofactor = $this->getCofactor(0, $currentColumn);
|
||||
$itemToAdd = $firstRowColValue*$cofactor;
|
||||
$result = $result + $itemToAdd;
|
||||
}
|
||||
|
||||
return $result;
|
||||
}
|
||||
|
||||
public function getAdjugate()
|
||||
{
|
||||
if (!$this->isSquare())
|
||||
{
|
||||
throw new Exception("Matrix must be square!");
|
||||
}
|
||||
|
||||
// See http://en.wikipedia.org/wiki/Adjugate_matrix
|
||||
if ($this->_rowCount == 2)
|
||||
{
|
||||
// Happy path!
|
||||
// Adjugate of:
|
||||
// | a b |
|
||||
// | c d |
|
||||
// is
|
||||
// | d -b |
|
||||
// | -c a |
|
||||
|
||||
$a = $this->_matrixRowData[0][0];
|
||||
$b = $this->_matrixRowData[0][1];
|
||||
$c = $this->_matrixRowData[1][0];
|
||||
$d = $this->_matrixRowData[1][1];
|
||||
|
||||
return new SquareMatrix( $d, -$b,
|
||||
-$c, $a);
|
||||
}
|
||||
|
||||
// The idea is that it's the transpose of the cofactors
|
||||
$result = array();
|
||||
|
||||
for ($currentColumn = 0; $currentColumn < $this->_columnCount; $currentColumn++)
|
||||
{
|
||||
for ($currentRow = 0; $currentRow < $this->_rowCount; $currentRow++)
|
||||
{
|
||||
$result[$currentColumn][$currentRow] = $this->getCofactor($currentRow, $currentColumn);
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($this->_columnCount, $this->_rowCount, $result);
|
||||
}
|
||||
|
||||
public function getInverse()
|
||||
{
|
||||
if (($this->_rowCount == 1) && ($this->_columnCount == 1))
|
||||
{
|
||||
return new SquareMatrix(1.0/$this->_matrixRowData[0][0]);
|
||||
}
|
||||
|
||||
// Take the simple approach:
|
||||
// http://en.wikipedia.org/wiki/Cramer%27s_rule#Finding_inverse_matrix
|
||||
$determinantInverse = 1.0 / $this->getDeterminant();
|
||||
$adjugate = $this->getAdjugate();
|
||||
|
||||
return self::scalarMultiply($determinantInverse, $adjugate);
|
||||
}
|
||||
|
||||
public static function scalarMultiply($scalarValue, $matrix)
|
||||
{
|
||||
$rows = $matrix->getRowCount();
|
||||
$columns = $matrix->getColumnCount();
|
||||
$newValues = array();
|
||||
|
||||
for ($currentRow = 0; $currentRow < $rows; $currentRow++)
|
||||
{
|
||||
for ($currentColumn = 0; $currentColumn < $columns; $currentColumn++)
|
||||
{
|
||||
$newValues[$currentRow][$currentColumn] = $scalarValue*$matrix->getValue($currentRow, $currentColumn);
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($rows, $columns, $newValues);
|
||||
}
|
||||
|
||||
public static function add($left, $right)
|
||||
{
|
||||
if (
|
||||
($left->getRowCount() != $right->getRowCount())
|
||||
||
|
||||
($left->getColumnCount() != $right->getColumnCount())
|
||||
)
|
||||
{
|
||||
throw new Exception("Matrices must be of the same size");
|
||||
}
|
||||
|
||||
// simple addition of each item
|
||||
|
||||
$resultMatrix = array();
|
||||
|
||||
for ($currentRow = 0; $currentRow < $left->getRowCount(); $currentRow++)
|
||||
{
|
||||
for ($currentColumn = 0; $currentColumn < $right->getColumnCount(); $currentColumn++)
|
||||
{
|
||||
$resultMatrix[$currentRow][$currentColumn] =
|
||||
$left->getValue($currentRow, $currentColumn)
|
||||
+
|
||||
$right->getValue($currentRow, $currentColumn);
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($left->getRowCount(), $right->getColumnCount(), $resultMatrix);
|
||||
}
|
||||
|
||||
public static function multiply($left, $right)
|
||||
{
|
||||
// Just your standard matrix multiplication.
|
||||
// See http://en.wikipedia.org/wiki/Matrix_multiplication for details
|
||||
|
||||
if ($left->getColumnCount() != $right->getRowCount())
|
||||
{
|
||||
throw new Exception("The width of the left matrix must match the height of the right matrix");
|
||||
}
|
||||
|
||||
$resultRows = $left->getRowCount();
|
||||
$resultColumns = $right->getColumnCount();
|
||||
|
||||
$resultMatrix = array();
|
||||
|
||||
for ($currentRow = 0; $currentRow < $resultRows; $currentRow++)
|
||||
{
|
||||
for ($currentColumn = 0; $currentColumn < $resultColumns; $currentColumn++)
|
||||
{
|
||||
$productValue = 0;
|
||||
|
||||
for ($vectorIndex = 0; $vectorIndex < $left->getColumnCount(); $vectorIndex++)
|
||||
{
|
||||
$leftValue = $left->getValue($currentRow, $vectorIndex);
|
||||
$rightValue = $right->getValue($vectorIndex, $currentColumn);
|
||||
$vectorIndexProduct = $leftValue*$rightValue;
|
||||
$productValue = $productValue + $vectorIndexProduct;
|
||||
}
|
||||
|
||||
$resultMatrix[$currentRow][$currentColumn] = $productValue;
|
||||
}
|
||||
}
|
||||
|
||||
return new Matrix($resultRows, $resultColumns, $resultMatrix);
|
||||
}
|
||||
|
||||
private function getMinorMatrix($rowToRemove, $columnToRemove)
|
||||
{
|
||||
// See http://en.wikipedia.org/wiki/Minor_(linear_algebra)
|
||||
|
||||
// I'm going to use a horribly naïve algorithm... because I can :)
|
||||
$result = array();
|
||||
|
||||
$actualRow = 0;
|
||||
|
||||
for ($currentRow = 0; $currentRow < $this->_rowCount; $currentRow++)
|
||||
{
|
||||
if ($currentRow == $rowToRemove)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
$actualCol = 0;
|
||||
|
||||
for ($currentColumn = 0; $currentColumn < $this->_columnCount; $currentColumn++)
|
||||
{
|
||||
if ($currentColumn == $columnToRemove)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
$result[$actualRow][$actualCol] = $this->_matrixRowData[$currentRow][$currentColumn];
|
||||
|
||||
$actualCol++;
|
||||
}
|
||||
|
||||
$actualRow++;
|
||||
}
|
||||
|
||||
return new Matrix($this->_rowCount - 1, $this->_columnCount - 1, $result);
|
||||
}
|
||||
|
||||
public function getCofactor($rowToRemove, $columnToRemove)
|
||||
{
|
||||
// See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for details
|
||||
// REVIEW: should things be reversed since I'm 0 indexed?
|
||||
$sum = $rowToRemove + $columnToRemove;
|
||||
$isEven = ($sum%2 == 0);
|
||||
|
||||
if ($isEven)
|
||||
{
|
||||
return $this->getMinorMatrix($rowToRemove, $columnToRemove)->getDeterminant();
|
||||
}
|
||||
else
|
||||
{
|
||||
return -1.0*$this->getMinorMatrix($rowToRemove, $columnToRemove)->getDeterminant();
|
||||
}
|
||||
}
|
||||
|
||||
public function equals($otherMatrix)
|
||||
{
|
||||
// If one is null, but not both, return false.
|
||||
if ($otherMatrix == null)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
if (($this->_rowCount != $otherMatrix->getRowCount()) || ($this->_columnCount != $otherMatrix->getColumnCount()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for ($currentRow = 0; $currentRow < $this->_rowCount; $currentRow++)
|
||||
{
|
||||
for ($currentColumn = 0; $currentColumn < $this->_columnCount; $currentColumn++)
|
||||
{
|
||||
$delta =
|
||||
abs($this->_matrixRowData[$currentRow][$currentColumn] -
|
||||
$otherMatrix->getValue($currentRow, $currentColumn));
|
||||
|
||||
if ($delta > self::ERROR_TOLERANCE)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
class Vector extends Matrix
|
||||
{
|
||||
public function __construct(array $vectorValues)
|
||||
{
|
||||
$columnValues = array();
|
||||
foreach($vectorValues as $currentVectorValue)
|
||||
{
|
||||
$columnValues[] = array($currentVectorValue);
|
||||
}
|
||||
parent::__construct(count($vectorValues), 1, $columnValues);
|
||||
}
|
||||
}
|
||||
|
||||
class SquareMatrix extends Matrix
|
||||
{
|
||||
public function __construct()
|
||||
{
|
||||
$allValues = \func_get_args();
|
||||
$rows = (int) sqrt(count($allValues));
|
||||
$cols = $rows;
|
||||
|
||||
$matrixData = array();
|
||||
$allValuesIndex = 0;
|
||||
|
||||
for ($currentRow = 0; $currentRow < $rows; $currentRow++)
|
||||
{
|
||||
for ($currentColumn = 0; $currentColumn < $cols; $currentColumn++)
|
||||
{
|
||||
$matrixData[$currentRow][$currentColumn] = $allValues[$allValuesIndex++];
|
||||
}
|
||||
}
|
||||
|
||||
parent::__construct($rows, $cols, $matrixData);
|
||||
}
|
||||
}
|
||||
|
||||
class DiagonalMatrix extends Matrix
|
||||
{
|
||||
public function __construct(array $diagonalValues)
|
||||
{
|
||||
$diagonalCount = count($diagonalValues);
|
||||
$rowCount = $diagonalCount;
|
||||
$colCount = $rowCount;
|
||||
|
||||
parent::__construct($rowCount, $colCount);
|
||||
|
||||
for($currentRow = 0; $currentRow < $rowCount; $currentRow++)
|
||||
{
|
||||
for($currentCol = 0; $currentCol < $colCount; $currentCol++)
|
||||
{
|
||||
if($currentRow == $currentCol)
|
||||
{
|
||||
$this->setValue($currentRow, $currentCol, $diagonalValues[$currentRow]);
|
||||
}
|
||||
else
|
||||
{
|
||||
$this->setValue($currentRow, $currentCol, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class IdentityMatrix extends DiagonalMatrix
|
||||
{
|
||||
public function __construct($rows)
|
||||
{
|
||||
parent::__construct(\array_fill(0, $rows, 1));
|
||||
}
|
||||
}
|
||||
?>
|
62
src/Numerics/Range.php
Normal file
62
src/Numerics/Range.php
Normal file
@ -0,0 +1,62 @@
|
||||
<?php
|
||||
|
||||
namespace Moserware\Numerics;
|
||||
|
||||
// The whole purpose of this class is to make the code for the SkillCalculator(s)
|
||||
// look a little cleaner
|
||||
|
||||
class Range
|
||||
{
|
||||
private $_min;
|
||||
private $_max;
|
||||
|
||||
public function __construct($min, $max)
|
||||
{
|
||||
if ($min > $max)
|
||||
{
|
||||
throw new Exception("min > max");
|
||||
}
|
||||
|
||||
$this->_min = $min;
|
||||
$this->_max = $max;
|
||||
}
|
||||
|
||||
public function getMin()
|
||||
{
|
||||
return $this->_min;
|
||||
}
|
||||
|
||||
public function getMax()
|
||||
{
|
||||
return $this->_max;
|
||||
}
|
||||
|
||||
protected static function create($min, $max)
|
||||
{
|
||||
return new Range($min, $max);
|
||||
}
|
||||
|
||||
// REVIEW: It's probably bad form to have access statics via a derived class, but the syntax looks better :-)
|
||||
|
||||
public static function inclusive($min, $max)
|
||||
{
|
||||
return static::create($min, $max);
|
||||
}
|
||||
|
||||
public static function exactly($value)
|
||||
{
|
||||
return static::create($value, $value);
|
||||
}
|
||||
|
||||
public static function atLeast($minimumValue)
|
||||
{
|
||||
return static::create($minimumValue, PHP_INT_MAX );
|
||||
}
|
||||
|
||||
public function isInRange($value)
|
||||
{
|
||||
return ($this->_min <= $value) && ($value <= $this->_max);
|
||||
}
|
||||
}
|
||||
|
||||
?>
|
Reference in New Issue
Block a user