2010-03-18 07:39:48 -04:00
|
|
|
|
using System;
|
|
|
|
|
using Moserware.Numerics;
|
|
|
|
|
using NUnit.Framework;
|
|
|
|
|
|
|
|
|
|
namespace UnitTests.Numerics
|
|
|
|
|
{
|
|
|
|
|
[TestFixture]
|
|
|
|
|
public class GaussianDistributionTests
|
|
|
|
|
{
|
|
|
|
|
private const double ErrorTolerance = 0.000001;
|
|
|
|
|
|
2010-04-19 07:39:24 -04:00
|
|
|
|
[Test]
|
|
|
|
|
public void CumulativeToTests()
|
|
|
|
|
{
|
|
|
|
|
// Verified with WolframAlpha
|
|
|
|
|
// (e.g. http://www.wolframalpha.com/input/?i=CDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
|
|
|
|
|
Assert.AreEqual(0.691462, GaussianDistribution.CumulativeTo(0.5), ErrorTolerance);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void AtTests()
|
|
|
|
|
{
|
|
|
|
|
// Verified with WolframAlpha
|
|
|
|
|
// (e.g. http://www.wolframalpha.com/input/?i=PDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
|
|
|
|
|
Assert.AreEqual(0.352065, GaussianDistribution.At(0.5), ErrorTolerance);
|
|
|
|
|
}
|
|
|
|
|
|
2010-03-18 07:39:48 -04:00
|
|
|
|
[Test]
|
|
|
|
|
public void MultiplicationTests()
|
|
|
|
|
{
|
|
|
|
|
// I verified this against the formula at http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
|
|
|
|
|
var standardNormal = new GaussianDistribution(0, 1);
|
|
|
|
|
var shiftedGaussian = new GaussianDistribution(2, 3);
|
|
|
|
|
|
|
|
|
|
var product = standardNormal * shiftedGaussian;
|
|
|
|
|
|
|
|
|
|
Assert.AreEqual(0.2, product.Mean, ErrorTolerance);
|
|
|
|
|
Assert.AreEqual(3.0 / Math.Sqrt(10), product.StandardDeviation, ErrorTolerance);
|
|
|
|
|
|
|
|
|
|
var m4s5 = new GaussianDistribution(4, 5);
|
|
|
|
|
var m6s7 = new GaussianDistribution(6, 7);
|
|
|
|
|
|
|
|
|
|
var product2 = m4s5 * m6s7;
|
|
|
|
|
Func<double, double> square = x => x*x;
|
|
|
|
|
|
|
|
|
|
var expectedMean = (4 * square(7) + 6 * square(5)) / (square(5) + square(7));
|
|
|
|
|
Assert.AreEqual(expectedMean, product2.Mean, ErrorTolerance);
|
|
|
|
|
|
|
|
|
|
var expectedSigma = Math.Sqrt(((square(5) * square(7)) / (square(5) + square(7))));
|
|
|
|
|
Assert.AreEqual(expectedSigma, product2.StandardDeviation, ErrorTolerance);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void DivisionTests()
|
|
|
|
|
{
|
|
|
|
|
// Since the multiplication was worked out by hand, we use the same numbers but work backwards
|
|
|
|
|
var product = new GaussianDistribution(0.2, 3.0 / Math.Sqrt(10));
|
|
|
|
|
var standardNormal = new GaussianDistribution(0, 1);
|
|
|
|
|
|
|
|
|
|
var productDividedByStandardNormal = product / standardNormal;
|
|
|
|
|
Assert.AreEqual(2.0, productDividedByStandardNormal.Mean, ErrorTolerance);
|
|
|
|
|
Assert.AreEqual(3.0, productDividedByStandardNormal.StandardDeviation, ErrorTolerance);
|
|
|
|
|
|
|
|
|
|
Func<double, double> square = x => x * x;
|
|
|
|
|
var product2 = new GaussianDistribution((4 * square(7) + 6 * square(5)) / (square(5) + square(7)), Math.Sqrt(((square(5) * square(7)) / (square(5) + square(7)))));
|
|
|
|
|
var m4s5 = new GaussianDistribution(4,5);
|
|
|
|
|
var product2DividedByM4S5 = product2 / m4s5;
|
|
|
|
|
Assert.AreEqual(6.0, product2DividedByM4S5.Mean, ErrorTolerance);
|
|
|
|
|
Assert.AreEqual(7.0, product2DividedByM4S5.StandardDeviation, ErrorTolerance);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void LogProductNormalizationTests()
|
|
|
|
|
{
|
2010-04-19 07:39:24 -04:00
|
|
|
|
// Verified with Ralf Herbrich's F# implementation
|
|
|
|
|
var standardNormal = new GaussianDistribution(0, 1);
|
|
|
|
|
var lpn = GaussianDistribution.LogProductNormalization(standardNormal, standardNormal);
|
|
|
|
|
Assert.AreEqual(-1.2655121234846454, lpn, ErrorTolerance);
|
2010-03-18 07:39:48 -04:00
|
|
|
|
|
2010-04-19 07:39:24 -04:00
|
|
|
|
var m1s2 = new GaussianDistribution(1, 2);
|
|
|
|
|
var m3s4 = new GaussianDistribution(3, 4);
|
|
|
|
|
var lpn2 = GaussianDistribution.LogProductNormalization(m1s2, m3s4);
|
|
|
|
|
Assert.AreEqual(-2.5168046699816684, lpn2, ErrorTolerance);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void LogRatioNormalizationTests()
|
|
|
|
|
{
|
|
|
|
|
// Verified with Ralf Herbrich's F# implementation
|
|
|
|
|
var m1s2 = new GaussianDistribution(1, 2);
|
|
|
|
|
var m3s4 = new GaussianDistribution(3, 4);
|
|
|
|
|
var lrn = GaussianDistribution.LogRatioNormalization(m1s2, m3s4);
|
|
|
|
|
Assert.AreEqual(2.6157405972171204, lrn, ErrorTolerance);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void AbsoluteDifferenceTests()
|
|
|
|
|
{
|
|
|
|
|
// Verified with Ralf Herbrich's F# implementation
|
|
|
|
|
var standardNormal = new GaussianDistribution(0, 1);
|
|
|
|
|
var absDiff = GaussianDistribution.AbsoluteDifference(standardNormal, standardNormal);
|
|
|
|
|
Assert.AreEqual(0.0, absDiff, ErrorTolerance);
|
2010-03-18 07:39:48 -04:00
|
|
|
|
|
2010-04-19 07:39:24 -04:00
|
|
|
|
var m1s2 = new GaussianDistribution(1, 2);
|
|
|
|
|
var m3s4 = new GaussianDistribution(3, 4);
|
|
|
|
|
var absDiff2 = GaussianDistribution.AbsoluteDifference(m1s2, m3s4);
|
|
|
|
|
Assert.AreEqual(0.4330127018922193, absDiff2, ErrorTolerance);
|
2010-03-18 07:39:48 -04:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|