trueskill/UnitTests/Numerics/GaussianDistributionTests.cs

110 lines
4.7 KiB
C#
Raw Normal View History

using System;
using Moserware.Numerics;
using NUnit.Framework;
namespace UnitTests.Numerics
{
[TestFixture]
public class GaussianDistributionTests
{
private const double ErrorTolerance = 0.000001;
[Test]
public void CumulativeToTests()
{
// Verified with WolframAlpha
// (e.g. http://www.wolframalpha.com/input/?i=CDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
Assert.AreEqual(0.691462, GaussianDistribution.CumulativeTo(0.5), ErrorTolerance);
}
[Test]
public void AtTests()
{
// Verified with WolframAlpha
// (e.g. http://www.wolframalpha.com/input/?i=PDF%5BNormalDistribution%5B0%2C1%5D%2C+0.5%5D )
Assert.AreEqual(0.352065, GaussianDistribution.At(0.5), ErrorTolerance);
}
[Test]
public void MultiplicationTests()
{
// I verified this against the formula at http://www.tina-vision.net/tina-knoppix/tina-memo/2003-003.pdf
var standardNormal = new GaussianDistribution(0, 1);
var shiftedGaussian = new GaussianDistribution(2, 3);
var product = standardNormal * shiftedGaussian;
Assert.AreEqual(0.2, product.Mean, ErrorTolerance);
Assert.AreEqual(3.0 / Math.Sqrt(10), product.StandardDeviation, ErrorTolerance);
var m4s5 = new GaussianDistribution(4, 5);
var m6s7 = new GaussianDistribution(6, 7);
var product2 = m4s5 * m6s7;
Func<double, double> square = x => x*x;
var expectedMean = (4 * square(7) + 6 * square(5)) / (square(5) + square(7));
Assert.AreEqual(expectedMean, product2.Mean, ErrorTolerance);
var expectedSigma = Math.Sqrt(((square(5) * square(7)) / (square(5) + square(7))));
Assert.AreEqual(expectedSigma, product2.StandardDeviation, ErrorTolerance);
}
[Test]
public void DivisionTests()
{
// Since the multiplication was worked out by hand, we use the same numbers but work backwards
var product = new GaussianDistribution(0.2, 3.0 / Math.Sqrt(10));
var standardNormal = new GaussianDistribution(0, 1);
var productDividedByStandardNormal = product / standardNormal;
Assert.AreEqual(2.0, productDividedByStandardNormal.Mean, ErrorTolerance);
Assert.AreEqual(3.0, productDividedByStandardNormal.StandardDeviation, ErrorTolerance);
Func<double, double> square = x => x * x;
var product2 = new GaussianDistribution((4 * square(7) + 6 * square(5)) / (square(5) + square(7)), Math.Sqrt(((square(5) * square(7)) / (square(5) + square(7)))));
var m4s5 = new GaussianDistribution(4,5);
var product2DividedByM4S5 = product2 / m4s5;
Assert.AreEqual(6.0, product2DividedByM4S5.Mean, ErrorTolerance);
Assert.AreEqual(7.0, product2DividedByM4S5.StandardDeviation, ErrorTolerance);
}
[Test]
public void LogProductNormalizationTests()
{
// Verified with Ralf Herbrich's F# implementation
var standardNormal = new GaussianDistribution(0, 1);
var lpn = GaussianDistribution.LogProductNormalization(standardNormal, standardNormal);
Assert.AreEqual(-1.2655121234846454, lpn, ErrorTolerance);
var m1s2 = new GaussianDistribution(1, 2);
var m3s4 = new GaussianDistribution(3, 4);
var lpn2 = GaussianDistribution.LogProductNormalization(m1s2, m3s4);
Assert.AreEqual(-2.5168046699816684, lpn2, ErrorTolerance);
}
[Test]
public void LogRatioNormalizationTests()
{
// Verified with Ralf Herbrich's F# implementation
var m1s2 = new GaussianDistribution(1, 2);
var m3s4 = new GaussianDistribution(3, 4);
var lrn = GaussianDistribution.LogRatioNormalization(m1s2, m3s4);
Assert.AreEqual(2.6157405972171204, lrn, ErrorTolerance);
}
[Test]
public void AbsoluteDifferenceTests()
{
// Verified with Ralf Herbrich's F# implementation
var standardNormal = new GaussianDistribution(0, 1);
var absDiff = GaussianDistribution.AbsoluteDifference(standardNormal, standardNormal);
Assert.AreEqual(0.0, absDiff, ErrorTolerance);
var m1s2 = new GaussianDistribution(1, 2);
var m3s4 = new GaussianDistribution(3, 4);
var absDiff2 = GaussianDistribution.AbsoluteDifference(m1s2, m3s4);
Assert.AreEqual(0.4330127018922193, absDiff2, ErrorTolerance);
}
}
}