<?php /* It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 2 * 1^2 15 = 7 + 2 * 2^2 21 = 3 + 2 * 3^2 25 = 7 + 2 * 3^2 27 = 19 + 2 * 2^2 33 = 31 + 2 * 1^2 It turns out that the conjecture was false. What is the smallest odd composite that cannot be written as the sum of a prime and twice a square? */ $primes = [2]; $composites = []; $twicesquares = []; function is_prime(int $n) :bool{for($i=$n**.5|1;$i&&$n%$i--;);return!$i&&$n>1;} for ($i= 3; $i<6000; $i += 2) { if (is_prime($i)) { $primes[] = $i; } else { $composites[] = $i; } } for($i=1; $i<100; $i++) { $twicesquares[] = 2*($i*$i); } foreach($composites as $composite) { $count = 0; foreach($primes as $prime) { if($prime > $composite) { break; } if(in_array($composite-$prime, $twicesquares)) { $count++; break; } } if($count == 0) { echo "Found $composite\n"; die; } }